Advertisement

Plasminogen Activators from Snake Venoms

  • Bernard F. Le BonniecEmail author
  • Julie Libraire
Chapter

Abstract

Normal fibrinolysis results from activation of plasminogen to plasmin, the effective blood clot dissolution enzyme. Plasminogen is a remarkably stable proenzyme circulating at a high 2 μM in blood. Plasmin is an efficient trypsin-like protease (clan SA) with broad specificity. Plasmin is highly destructive, but its affinity for fibrin normally localizes its action in the vicinity of blood clot and two powerful inhibitors prevent its uncontrolled dissemination. Five types of plasminogen activators had been described to date. Four are typical serine proteases sharing several distinctive features. The fifth kind includes streptokinase and staphylokinase of bacterial origin. Tissue-type (t-PA) and urokinase-type (u-PA) plasminogen activators are physiologic activators sharing similar vulnerability to inhibitors but differing for activation mechanism and localization of action. An additional activator had been characterized in the saliva of the vampire bat Desmodus rotundus (DS-PA) which deliberately lacks regulatory mechanisms of inhibition while retaining a strict dependence to fibrin for activity. Maintaining blood flow in its prey is the goal of bloodsucking animals. During the past 25 years, a number of plasminogen activators had been isolated from various snake venoms: Chinese green tree viper (TSV-PA from Trimeresurus stejnegeri), Bushmaster (LV-PA from Lachesis muta muta), Korean salmosa snake (Haly-PA from Agkistrodon halys brevicaudus) and Ussuri mamushi (ABUSV-PA from Agkistrodon blomhoffii Ussuriensis). Most have been characterized, purified, and sequenced; the structure of TSV-PA had been solved by X-ray diffraction. These are uncontrolled proteases triggering systemic plasminogen activation with catastrophic consequence for the prey.

Keywords

Snake Venom Plasminogen Activation Bovine Pancreatic Trypsin Inhibitor Amidolytic Activity Snake Venom Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alfano, D., Franco, P., Vocca, I., Gambi, N., Pisa, V., Mancini, A., Caputi, M., Carriero, M.V., Iaccarino, I., Stoppelli, M.P., 2005. The urokinase plasminogen activator and its receptor: role in cell growth and apoptosis. Thromb. Haemost. 93, 205–211.PubMedGoogle Scholar
  2. Appella, E., Robinson, E.A., Ullrich, S.J., Stoppelli, M.P., Corti, A., Cassani, G., Blasi, F., 1987. The receptor-binding sequence of urokinase. A biological function for the growth-factor module of proteases. J. Biol. Chem. 262, 4437–4440.PubMedGoogle Scholar
  3. Bajzar, L., Manuel, R., Nesheim, M.E., 1995. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J. Biol. Chem. 270, 14477–14484.CrossRefPubMedGoogle Scholar
  4. Bergum, P.W., Gardell, S.J., 1992. Vampire bat salivary plasminogen activator exhibits a strict and fastidious requirement for polymeric fibrin as its cofactor, unlike human tissue-type plasminogen activator. A kinetic analysis. J. Biol. Chem. 267, 17726–17731.Google Scholar
  5. Bianchini, E.P., Louvain, V.B., Marque, P.E., Juliano, M.A., Juliano, L., Le Bonniec, B.F., 2002. Mapping of the catalytic groove preferences of factor Xa reveals an inadequate selectivity for its macromolecule substrates. J. Biol. Chem. 277, 20527–20534.CrossRefPubMedGoogle Scholar
  6. Bode, W., 2005. The structure of thrombin, a chameleon-like proteinase. J. Thromb. Haemost. 3, 2379–2388.CrossRefPubMedGoogle Scholar
  7. Bode, W., Mayr, I., Baumann. U., Huber, R., Stone, S.R., Hofsteenge, J., 1989. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 8, 3467–3475.PubMedGoogle Scholar
  8. Braud, S., Le Bonniec, B.F., Bon, C., Wisner, A., 2002. The stratagem utilized by the plasminogen activator from the snake Trimeresurus stejnegeri to escape serpins. Biochemistry 41, 8478–8484.CrossRefPubMedGoogle Scholar
  9. Braud, S., Parry, M.A., Maroun, R., Bon, C., Wisner, A., 2000. The contribution of residues 192 and 193 to the specificity of snake venom serine proteinases. J. Biol. Chem. 275, 1823–1828.CrossRefPubMedGoogle Scholar
  10. Budzynski, A. Z., 1985. Secretion of cellular plasminogen activators upon stimulation by Crotalinae snake venoms and their components. Thromb. Haemost. 54, 314 (Abstract).Google Scholar
  11. Cao, Y., Yu, G.S., Yang, S.L., Gong, Y., 2001. Expression of a snake venom plasminogen activator TSV-PA in insect cells. Sheng Wu Gong Cheng Xue Bao. 17, 506–509.PubMedGoogle Scholar
  12. Carmeliet, P., Collen, D., 1996. Gene manipulation and transfer of the plasminogen and coagulation system in mice. Semin. Thromb. Hemost. 22, 525–542.CrossRefPubMedGoogle Scholar
  13. Collen, D., Lijnen, H.R., 2004. Tissue-type plasminogen activator: a historical perspective and personal account. J. Thromb. Haemost. 2, 541–546.CrossRefPubMedGoogle Scholar
  14. Danø, K., Behrendt, N., Høyer-Hansen, G., Johnsen, M., Lund, L.R., Ploug, M., Rømer, J., 2005. Plasminogen activation and cancer. Thromb. Haemost. 93, 676–681.PubMedGoogle Scholar
  15. Dekker, R.J., Eichinger, A., Stoop, A.A., Bode, W., Pannekoek, H., Horrevoets, A.J., 1999. The variable region-1 from tissue-type plasminogen activator confers specificity for plasminogen activator inhibitor-1 to thrombin by facilitating catalysis: release of a kinetic block by a heterologous protein surface loop. J. Mol. Biol. 293, 613–627.CrossRefPubMedGoogle Scholar
  16. Ellis, V., Behrendt, N., Danø, K., 1991. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J. Biol. Chem. 266, 12752–12758.PubMedGoogle Scholar
  17. Felicori, L.F., Chávez-Olórtegui, C., Sánchez, E.F., 2005. Specific identification of Lachesis muta muta snake venom using antibodies against the plasminogen activator enzyme, LV-PA. Toxicon 45, 803–806.CrossRefPubMedGoogle Scholar
  18. Gao, R., Zhang, Y., Meng, Q.X., Lee, W.H., Li, D.S., Xiong, Y.L., Wang, W.Y., 1998. Characterization of three fibrinogenolytic enzymes from Chinese green tree viper (Trimeresurus stejnegeri) venom. Toxicon 36, 457–467.CrossRefPubMedGoogle Scholar
  19. Gardell, S.J., Duong, L.T., Diehl, R.E., York, J.D., Hare, T.R., Register, R.B., Jacobs, J.W., Dixon, R.A., Friedman, P.A., 1989. Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator. J. Biol. Chem. 264, 17947–17952.PubMedGoogle Scholar
  20. Gettins, P.G., Olson, S.T., 2009. Exosite determinants of serpin specificity. J. Biol. Chem. 284, 20441–20445.CrossRefPubMedGoogle Scholar
  21. Gladson, C.L., Schleef, R.R., Binder, B.R., Loskutoff, D.J., Griffin, J.H., 1989. A comparison between activated protein C and des-1–41-light chain-activated protein C in reactions with type 1 plasminogen activator inhibitor. Blood 74, 173–181.PubMedGoogle Scholar
  22. Hermogenes, A.L., Richardson, M., Magalhaes, A., Yarleque, A., Rodriguez, E., Sanchez, E.F., 2006. Interaction of a plasminogen activator proteinase, LV-PA with human α2-macroglobulin. Toxicon 47, 490–494.CrossRefPubMedGoogle Scholar
  23. Horrevoets, A.J., Smilde, A.E., Fredenburgh, J.C., Pannekoek, H., Nesheim, M.E., 1995. The activation-resistant conformation of recombinant human plasminogen is stabilized by basic residues in the amino-terminal hinge region. J. Biol. Chem. 270, 15770–15776.CrossRefPubMedGoogle Scholar
  24. Høyer-Hansen, G., Rønne, E., Solberg, H., Behrendt, N., Ploug, M., Lund, L.R., Ellis, V., Danø, K., 1992. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. J. Biol. Chem. 267, 18224–18229.PubMedGoogle Scholar
  25. Hoylaerts, M., Rijken, D.C., Lijnen, H.R., Collen, D., 1982. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J. Biol. Chem. 257, 2912–1919.PubMedGoogle Scholar
  26. Jia, Y., Cantu, B.A., Sánchez, E.E., Pérez, J.C., 2008. Complementary DNA sequencing and identification of mRNAs from the venomous gland of Agkistrodon piscivorus leucostoma. Toxicon 51, 1457–1466.CrossRefPubMedGoogle Scholar
  27. Kamiguti, A.S., Desmond, H.P., Theakston, R.D., Hay, C.R., Zuzel, M., 1994. Ineffectiveness of the inhibition of the main haemorrhagic metalloproteinase from Bothrops jararaca venom by its only plasma inhibitor, alpha 2-macroglobulin. Biochim. Biophys. Acta 1200, 307–314.CrossRefPubMedGoogle Scholar
  28. Karbovs’kyĭ, V.L., Levkiv, M.I.U., Savchuk, O.M., Hornyts’ka, O.V., Volkov, H.L., Bukhan, T.S., 2006. Plasminogen activator from Agkistrodon halys halys venom Ukr. Biokhim. Zh. 78, 32–37.Google Scholar
  29. Kisiel, W., Choi, E., Kondo, S., 1987. Isolation of a protein C activator from southern copperhead venom. Biochem. Biophys. Res. Commun. 143, 917–922.CrossRefPubMedGoogle Scholar
  30. Klein, J.D., Walker, F.J., 1986. Purification of a protein C activator from the venom of the southern copperhead snake (Agkistrodon contortrix contortrix). Biochemistry 25, 4175–4179.CrossRefPubMedGoogle Scholar
  31. Klöcking, H.P., Hoffmann, A., Markwardt, F., 1987. Release of plasminogen activator by batroxobin. Haemostasis 17, 235–237.PubMedGoogle Scholar
  32. Lamba, D., Bauer, M., Huber, R., Fischer, S., Rudolph, R., Kohnert, U., Bode, W., 1996. The 2.3 A crystal structure of the catalytic domain of recombinant two-chain human tissue-type plasminogen activator. J. Mol. Biol. 258, 117–35.CrossRefPubMedGoogle Scholar
  33. Le Bonniec, B.F., Esmon, C.T., 1991. Glu-192➔Gln substitution in thrombin mimics the catalytic switch induced by thrombomodulin. Proc. Natl. Acad. Sci. U.S.A. 88, 7371–7375.CrossRefPubMedGoogle Scholar
  34. Le Bonniec, B.F., Guinto, E.R., Esmon, C.T., 1992. The role of calcium ions in factor X activation by thrombin E192Q. J. Biol. Chem. 267, 6970–6976.PubMedGoogle Scholar
  35. Le Bonniec, B.F., Guinto, E.R., MacGillivray, R.T., Stone, S.R., Esmon, C.T., 1993. The role of thrombin’s Tyr-Pro-Pro-Trp motif in the interaction with fibrinogen, thrombomodulin, protein C, antithrombin III, and the Kunitz inhibitors. J. Biol. Chem. 268, 19055–19061.PubMedGoogle Scholar
  36. Le Bonniec, B.F., Myles, T., Johnson, T., Knight, C.G., Tapparelli, C., Stone, S.R., 1996. Characterization of the P2 and P3 specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis. Biochemistry 35, 7114–7122.CrossRefPubMedGoogle Scholar
  37. Lijnen, H.R., Collen, D., 1998. t-Plasminogen activator, in: Barrett, A.J., Rawlings, N.D., Woessner, J.F. (Eds.), Handbook of Proteolytic Enzymes. Academic Press, London, UK, pp. 184–190.Google Scholar
  38. Liu, S., Sun, M.Z., Greenaway, F.T., 2006. A novel plasminogen activator from Agkistrodon blomhoffii ussurensis venom (ABUSV-PA): purification and characterization. Biochem. Biophys. Res. Commun. 348, 1279–1287.CrossRefPubMedGoogle Scholar
  39. Lund, L.R., Green, K.A., Stoop, A.A., Ploug, M., Almholt, K., Lilla, J., Nielsen, B.S., Christensen, I.J., Craik, C.S., Werb, Z., Danø, K., Rømer, J., 2006. Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice. EMBO J. 25, 2686–2697.CrossRefPubMedGoogle Scholar
  40. Madison, E.L., Coombs, G.S., Corey, D.R., 1995. Substrate specificity of tissue type plasminogen activator. Characterization of the fibrin independent specificity of t-PA for plasminogen. J. Biol. Chem. 270, 7558–7562.CrossRefPubMedGoogle Scholar
  41. Madison, E.L., Goldsmith, E.J., Gerard, R.D., Gething, M.J., Sambrook, J.F., 1989. Serpin-resistant mutants of human tissue-type plasminogen activator. Nature 339, 721–724.CrossRefPubMedGoogle Scholar
  42. Madison, E.L., Goldsmith, E.J., Gerard, R.D., Gething, M.J., Sambrook, J.F., Bassel-Duby, R.S., 1990. Amino acid residues that affect interaction of tissue-type plasminogen activator with plasminogen activator inhibitor 1. Proc. Natl. Acad. Sci. U.S.A. 87, 3530–3533.CrossRefPubMedGoogle Scholar
  43. Mao, S.S., Holahan, M.A., Bailey, C., Wu, G., Colussi, D., Carroll, S.S., Cook, J.J., 2005. Demonstration of enhanced endogenous fibrinolysis in thrombin activatable fibrinolysis inhibitor-deficient mice. Blood Coagul. Fibrinolysis 16, 407–415.CrossRefPubMedGoogle Scholar
  44. Markland, F.S., 1998a. Snake venoms and the hemostatic system. Toxicon 36, 1749–1800.CrossRefPubMedGoogle Scholar
  45. Markland, F.S., Jr., 1998b. Snake venom fibrinogenolytic and fibrinolytic enzymes: an updated inventory. Registry of exogenous hemostatic factors of the scientific and standardization committee of the international society on thrombosis and haemostasis. Thromb. Haemost. 79, 668–674.PubMedGoogle Scholar
  46. McMullen, B.A., Fujikawa, K., Kisiel, W., 1989. Primary structure of a protein C activator from Agkistrodon contortrix contortrix venom. Biochemistry. 28, 674–679.CrossRefPubMedGoogle Scholar
  47. Miles, L.A., Castellino, F.J., Gong, Y., 2003. Critical role for conversion of glu-plasminogen to Lys-plasminogen for optimal stimulation of plasminogen activation on cell surfaces. Trends Cardiovasc. Med. 13, 21–30.CrossRefPubMedGoogle Scholar
  48. Murakami, M.T., Arni, R.K., 2005. Crystallization and preliminary X-ray crystallographic studies of Protac, a commercial protein C activator isolated from Agkistrodon contortrix contortrix venom. Biochim. Biophys. Acta 1752, 202–204.CrossRefPubMedGoogle Scholar
  49. Pan, H., Du, X., Yang, G., Zhou, Y., Wu, X., 1999. cDNA cloning and expression of acutin. Biochem. Biophys. Res. Commun. 255, 412–415.CrossRefPubMedGoogle Scholar
  50. Park, D., Kim, H., Chung, K., Kim, D.S., Yun, Y., 1998. Expression and characterization of a novel plasminogen activator from Agkistrodon halys venom. Toxicon 36, 1807–1819.CrossRefPubMedGoogle Scholar
  51. Parry, M.A., Jacob, U., Huber, R., Wisner, A., Bon, C., Bode, W., 1998. The crystal structure of the novel snake venom plasminogen activator TSV-PA: a prototype structure for snake venom serine proteinases. Structure 6, 1195–1206.CrossRefPubMedGoogle Scholar
  52. Rawlings, N.D., 1998. Family S1 of trypsin, in: Barrett, A.J., Rawlings, N.D., Woessner, J.F. (Eds.), Handbook of Proteolytic Enzymes. Academic Press, London, UK, pp. 3–17.Google Scholar
  53. Rojnuckarin, P., Intragumtornchai, T., Sattapiboon, R., Muanpasitporn, C., Pakmanee, N., Khow, O., Swasdikul, D., 1999. The effects of green pit viper (Trimeresurus albolabris and Trimeresurus macrops) venom on the fibrinolytic system in human. Toxicon 37, 743–755.CrossRefPubMedGoogle Scholar
  54. Sanchez, E.F., Felicori, L.F., Chavez-Olortegui, C., Magalhaes, H.B., Hermogenes, A.L., Diniz, M.V., Junqueira-de-Azevedo, I.L., Magalhaes, A., Richardson, M., 2006. Biochemical characterization and molecular cloning of a plasminogen activator proteinase (LV-PA) from bushmaster snake venom. Biochim. Biophys. Acta 1760, 1762–1771.CrossRefPubMedGoogle Scholar
  55. Sanchez, E.F., Santos, C.I., Magalhaes, A., Diniz, C.R., Figueiredo, S., Gilroy, J., Richardson, M., 2000. Isolation of a proteinase with plasminogen-activating activity from Lachesis muta muta (Bushmaster) snake venom. Arch. Biochem. Biophys. 378, 131–141.CrossRefPubMedGoogle Scholar
  56. Schneider, M., Nesheim, M., 2004. A study of the protection of plasmin from antiplasmin inhibition within an intact fibrin clot during the course of clot lysis. J. Biol. Chem. 279, 13333–13339.CrossRefPubMedGoogle Scholar
  57. Sottrup-Jensen, L., 1989. α-macroglobulins: structure, shape, and mechanism of proteinase complex formation. J. Biol. Chem. 264, 11539–11542.PubMedGoogle Scholar
  58. Stocker, K., Fischer, H., Meier, J., Brogli, M., Svendsen, L., 1987. Characterization of the protein C activator Protac from the venom of the southern copperhead (Agkistrodon contortrix) snake. Toxicon 25, 239–252.CrossRefPubMedGoogle Scholar
  59. Stone, S.R., Betz, A., Hofsteenge, J., 1991. Mechanistic studies on thrombin catalysis. Biochemistry 30, 9841–9848.CrossRefPubMedGoogle Scholar
  60. Sugiki, M., Yoshida, E., Anai, K., Maruyama, M., 1998. Activation of single-chain urokinase-type plasminogen activator by a hemorrhagic metalloproteinase, jararafibrase I, in Bothrops jararaca venom. Toxicon 36, 993–1000.CrossRefPubMedGoogle Scholar
  61. Sunagawa, M., Hanashiro, K., Nakamura, M., Kosugi, T., 1996. Habutobin releases plasminogen activator (U-PA) from bovine pulmonary artery endothelial cells. Toxicon 34, 691–699.CrossRefPubMedGoogle Scholar
  62. Swenson, S., Markland, F.S. Jr., 2005. Snake venom fibrin(ogen)olytic enzymes. Toxicon 45, 1021–1039.CrossRefPubMedGoogle Scholar
  63. Thelwell, C., Longstaff, C., 2007. The regulation by fibrinogen and fibrin of tissue plasminogen activator kinetics and inhibition by plasminogen activator inhibitor 1. J. Thromb. Haemost. 5, 804–811.CrossRefPubMedGoogle Scholar
  64. van de Locht, A., Bode, W., Huber, R., Le Bonniec, B.F., Stone, S.R., Esmon, C.T., Stubbs, M.T., 1997. The thrombin E192Q-BPTI complex reveals gross structural rearrangements: implications for the interaction with antithrombin and thrombomodulin. EMBO J. 16, 2977–84.CrossRefPubMedGoogle Scholar
  65. Wang, Y.M., Wang, S.R., Tsai, I.H., 2001. Serine protease isoforms of Deinagkistrodon acutus venom: cloning, sequencing and phylogenetic analysis. Biochem. J. 354, 161–168.CrossRefPubMedGoogle Scholar
  66. Wu, C., Dong, N., da Cunha, V., Martin-McNulty, B., Tran, K., Nagashima, M., Wu, Q., Morser, J., Wang, Y.X., 2003. Activated thrombin-activatable fibrinolysis inhibitor attenuates spontaneous fibrinolysis of batroxobin-induced fibrin deposition in rat lungs. Thromb. Haemost. 90, 414–421.PubMedGoogle Scholar
  67. Zhang, Y., Wisner, A., Maroun, R.C., Choumet, C., Xiong, Y., Bon, C., 1997. Trimeresurus stejnegeri snake venom plasminogen activator site-directed mutagenesis and molecular modeling. J. Biol. Chem. 272, 20531–20537.CrossRefPubMedGoogle Scholar
  68. Zhang, Y., Wisner, A., Xiong, Y., Bon, C., 1995. A novel plasminogen activator from snake venom. Purification, characterization, and molecular cloning. J. Biol. Chem. 270, 10246–10255.CrossRefPubMedGoogle Scholar
  69. Zhu, Z., Liang, Z., Zhang, T., Zhu, Z., Xu, W., Teng, M., Niu, L., 2005. Crystal structures and amidolytic activities of two glycosylated snake venom serine proteinases. J. Biol. Chem. 280, 10524–10529CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.INSERM U765, Université Paris DescartesParis CedexFrance

Personalised recommendations