Anticoagulants from Scorpion Venoms

  • N.A. Valdez-Cruz
  • R. Conde
  • F.Z. Zamudio
  • L.D. PossaniEmail author


Venom from at least six distinct families of scorpion: Buthidae, Caraboctonidae, Iuridae, Ischnuridae, Scorpionidae and Vejovidae are known to contain many pharmacologically active peptides and some proteins involved in coagulation. The list of such compounds is increasing with time and newly described cases. Earlier reports performed with venom from Buthus tamulus and Palamneus gravimanus have shown the presence of coagulopathy in experimental animals. Other scorpion species such as: Hottentotta judaicus, Heterometrus spinnifer, Heterometrus fulvipes, Parabuthus transvaalicus, Androctonus australis, Scorpio maurus palmatus and Leiurus quinquestriatus habraeus were reported to contain components implicated in coagulation. From Buthus marthensi Karsch a venom active polypeptide (SVAP) that causes platelet aggregation in vivo and in vitro was described. A gene cloned from the same scorpion coding for a putative peptide named BmKAPi was reported. Its deduced amino acid sequence shows similarities to anticoagulant peptides and proteinase inhibitors from other species of animals. One of the best characterized components was Imperatoxin inhibitor (IpTxi) from the African scorpion Pandinus imperator Hector, described as a heterodimeric protein in which the major subunit has an amino acid sequence similar to known phospholipases (PLA2) from pancreas and snake venoms. The venom from the Mexican scorpion Anuroctonus phaiodactylus was reported to cause delay of clotting time of human platelet rich plasma (PRP) and poor platelet plasma (PPP). Several heterodimeric phospholipases and genes coding for similar ones were described from the venomous glands of this species. Recently, the venom from the Venezuelan scorpion Tityus discrepans was shown to induce inflammation, partial thromboplastin time (PTT) and prothrombin time (PT). Also recently venom from Hadrurus gertschi and Opisthacanthus cayaporum were reported to contain phospholipase enzymes. Thus far none of the well documented cases of snake venom components that interfere with blood coagulation such as: serine proteases, metalloproteinases, C- type lectins, disintegrins have been identified in scorpion venom. This communication revises the state of art in this subject.


Disulfide Bridge Snake Venom Anticoagulant Activity Venom Gland Poor Platelet Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by grants from Consejo Nacional de Ciencia y Tencnologia, Fondo-Salud number 014109 (Mexican Government) and Instituto Bioclón S.A. de C.V. (Mexico).


  1. Ali, S.A., Stoeva, S., Schütz, J., Kayed, R., Abassi, A., Zaidi, Z.H., Voelter, W., 1998. Purification and primary structure of low molecular mass peptides from scorpion (Buthus sindicus) venom. Comp. Biochem. Physiol. A. 121, 323–332.Google Scholar
  2. Almeida, F.M., Pimenta, A.M., De Figueiredo, S.G., Santoro, M.M., Martin-Eauclaire, M.F., Diniz, C.R., De Lima, M.E., 2002. Enzymes with gelatinolytic activity can be found in Tityus bahiensis and Tityus serrulatus venoms. Toxicon 40, 1041–1045.PubMedCrossRefGoogle Scholar
  3. Berg, R.A., Tarantino, M.D., 1991. Envenomation by the scorpion Centruroides exilicauda sculpturatus. Severe and unusual manifestations. Pediatrics 87, 930–933.PubMedGoogle Scholar
  4. Brazón, J., D’Suze, G., Guerrero, B., Sevcik, C., Arocha-Piñango, C.L., 2001. The complex effect of Tityus discrepans scorpion venom on hemostatic mechanism involves: degradation of fibrinogen a-chain, the presence of plasmin like fractions and/or plasminogen activators and inhibitors of plasmin and/or plasminogen activators. Proceedings of Seventh Symposium: Pan-American Section of the International Society on Toxinology on Animal, Plant and Microbial Toxins, p. 56.Google Scholar
  5. Brazón, J., Guerrero, B., Arocha-Piñango, C.L., Sevcik, C., D’Suze, G., 2008. Effect of Tityus discrepans scorpion venom on global coagulation test. Preliminary studies. Invest. Clin. 49, 49–58.PubMedGoogle Scholar
  6. Brazón, J., D’Suze, G., D’Errico, M.L., Arocha-Piñango, C.L., Guerrero, B., 2009. Discreplasminin, a plasmin inhibitor isoltated from Tityus discrepans scorpion venom. Arch. Toxicol. 83, 669–678.PubMedCrossRefGoogle Scholar
  7. Bringans, S., Eriksen, S., Kendrick, T., Gopalakrishnakone, P., Livk, A., Lock, R., Lipscombe, R., 2008. Proteomic analysis of the venom of Heterometrus longimanus (Asian black scorpion). Proteomics 8, 1081–1096.PubMedCrossRefGoogle Scholar
  8. Chase, P., Boyer-hassen, L., Mcnally, J., Vazquez, H.L., Theodorou, A.A., Gardner Walter, F., Alagon, A., 2009. Serum levels and urine detection of Centruroides sculpturatus venom in significantly envenomated patients. Clin. Toxicol. 47, 24–28.CrossRefGoogle Scholar
  9. Cirino, G., Cicala, C., Sorrentino, L., Browning, J.L., 1993. Human recombinant non pancreatic secreted platelet phospholipase A2 has anticoagulant activity in vitro on human plasma. Thromb. Res. 70, 337–342.PubMedCrossRefGoogle Scholar
  10. Conde, R., Zamudio, F., Becerril, B., Possani, L.D., 1999. Phospholipin, a novel heterodimeric phospholipase A2 from Pandinus imperator scorpion venom. FEBS Lett. 460, 447–450.PubMedCrossRefGoogle Scholar
  11. Condrea, E., Yang, C.C., Rosenberg, P., 1981. Lack of correlation between anticoagulant activity and phospholipid hydrolysis by snake venom phospholipases A2. Thromb. Haemost. 45, 82–85.PubMedGoogle Scholar
  12. Condrea, E., Rapuano, B.E., Fletcher, J.E., Yang, C.C., Rosenberg, P., 1982. Ethoxyformylation and guanidination of snake venom phospholipases A2: effects on enzymatic activity, lethality and some pharmacological properties. Toxicon 21, 209–218.CrossRefGoogle Scholar
  13. Dai, L., Corzo, G., Naoki, H., Andriantsiferana, M., Nakajima, T., 2002. Purification, structure-function analysis, and molecular characterization of novel linear peptides from scorpion Opisthacanthus madagascariensis. Biochem. Biophys. Res. Commun. 293, 1514–1522.PubMedCrossRefGoogle Scholar
  14. Dennis, E.A., 1994. Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 269, 13057–13060.PubMedGoogle Scholar
  15. Deshimaru, M., Ogawa, T., Nakashima, K., Nobuhisa, I., Chijiwa, T., Shimohigashi, Y., Fukumaki, Y., Niwa, M., Yamashina, I., Hattori, S., Ohno, M., 1996. Accelerated evolution of crotalinae snake venom gland serine proteases. FEBS Lett. 397,83–88.PubMedCrossRefGoogle Scholar
  16. Devi, C.S., Reddy, C.N., Deve, S., Subramaniam Ban, V., Suvarnakumari, G., Murthy, D.P., Reddy, C.R.R.M., 1970. Defibrination syndrome due to scorpion poisoning. Br. Med. J. 1, 345–347.PubMedCrossRefGoogle Scholar
  17. Diego-García, E., Schwartz, E.F., D’Suze, G., González, S.A.R., Batista, C.V.F., García, B.I., Rodríguez de la Vega, R.C., Possani, L.D., 2007. Wide phylogenetic distribution of Scorpine and long-chain beta-KTx-like peptides in scorpion venoms: identification of "orphan" components. Peptides 28, 31–37.PubMedCrossRefGoogle Scholar
  18. D’Suze, G., Moncada, S., González, C., Sevcik, C., Aguilar, V., Alagón, A., 2003. Relationship between plasmatic levels of various cytokines, tumour necrosis factor, enzymes, glucose and venom concentration following Tityus scorpion sting. Toxicon 41, 367–375.PubMedCrossRefGoogle Scholar
  19. D’Suze, G., Díaz, P., Salazar, V., Sevcik, C., Brazón, J., 2007. Effect of leukocyte inhibitors benzydamine and cyclophosphamide, on lung injury caused by Tityus discrepans scorpion venom. Toxicon 50, 1116–1125.PubMedCrossRefGoogle Scholar
  20. Elgar, D., Verdonck, F., Grobler, A., Fourie, C., du Plessis, J., 2006. Ion selectivity of scorpion toxin-induced pores in cardiac myocytes. Peptides 27, 55–61.PubMedCrossRefGoogle Scholar
  21. Fontecilla-Camps, J.C., Almassy, R.J., Suddath, F.L., Watt, D.D., Bugg, C.E., 1980. Three-dimensional structure of a protein from scorpion venom: a new structural class of neurotoxins. Proc. Natl. Acad. Sci. U.S.A. 77, 6496–6550.PubMedCrossRefGoogle Scholar
  22. Gajalakshmi, B.E., 1982. Coagulant studies following scorpion venom injection in animals. Indian J. Med. Res. 76, 337–341.PubMedGoogle Scholar
  23. Gibly, R., Williams, M., Walter, F.G., McNally, J., Conroy, C., Berg, R.A., 1999. Continuous intravenous midazolam infusion for Centruroides exilicauda scorpion envenomation. Ann. Emerg. Med. 34, 620–625.PubMedCrossRefGoogle Scholar
  24. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A., 2005. Protein identification and analysis tools on the ExPASy server, in: Walker, J.M. (Ed.), The Proteomics Protocols Handbook. Humana Press, Totowa, NJ, pp. 571–607.CrossRefGoogle Scholar
  25. Hamilton, P.L., Ogston, D., Douglas, A., 1974. Coagulant activity of the scorpion venoms Palamneus gravimanus and Leiurus guinquestriatus. Toxicon 12, 291–296.PubMedCrossRefGoogle Scholar
  26. Han, T.S., Teichert, R.W., Olivera, B.M., Bulaj, G., 2008. Conus venoms – a rich source of peptide-based therapeutics. Curr. Pharm. Des. 14, 2462–2479.PubMedCrossRefGoogle Scholar
  27. Hariprasad, G., Singh, B.S. Das, U., Ethayathulla, A.S., Kaur, P., Singh, T.P., Srinivasan, A., 2007. Cloning, sequence analysis and homology modeling of a novel phospholipase a2 from Heterometrus fulvipes (Indian black scorpion). DNA Sequence 18, 242–246.PubMedGoogle Scholar
  28. Hariprasad, G., Saravanan, K., Singh, S.B., Das, U., Sharma, S., Kaur, P., Singh, T.P., Srinivasan, A., 2009. Group III PLA2 from the scorpion, Mesobuthus tamulus: cloning and recombinant expression in E. coli. Electronic J. Biotech. 12(3), 1–7.Google Scholar
  29. Heinrikson, R.L., 1991. Dissection and sequence analysis of phospholipases A2. Meth. Enzymol. 197, 201–214.PubMedCrossRefGoogle Scholar
  30. John, T.R., Smith, L.A., Kaiser, I.I., 1994. Genomic sequences encoding the acidic and basic subunits of Mojave toxin: unusually high sequence identity of non-coding regions. Gene 139, 229–234.PubMedCrossRefGoogle Scholar
  31. John, T.R., Smith, J.J., Kaiser, I.I., 1996. A phospholipase A2-like pseudogene retaining the highly conserved introns of Mojave toxin and other snake venom group II PLA2s, but having different exons. DNA Cell Biol. 15, 661–668.PubMedCrossRefGoogle Scholar
  32. Kini, R.M., Evans, H.J., 1987. Structure-function relationships of phospholipases. The anticoagulant region of phospholipases A2. J. Biol. Chem. 262, 14402–14407.PubMedGoogle Scholar
  33. Kini, R.M., Evans, H.J., 1988. Correlation between the enzymatic activity, anticoagulant and antiplatelet effects of phospholipase A2 isoenzymes from Naja nigricollis venom. Thromb. Haemost. 60, 170–173.PubMedGoogle Scholar
  34. Kini, R.M., Evans, H.J., 1989. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon 27, 613–635.PubMedCrossRefGoogle Scholar
  35. Kini, R.M., 2005. Structure-function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon 45, 1147–1161.PubMedCrossRefGoogle Scholar
  36. Kramer, R.M., Hession, C., Johansen, B., Hayes, G., McGray, P., Chow, E.P., Tizard, R., Pepinsky, R.B., 1989. Structure and properties of a human non-pancreatic phospholipase A2. J. Biol. Chem. 264, 5768–5775.PubMedGoogle Scholar
  37. LoVecchio, F., Welch, S., Klemens, J., Curry, S.C., Thomas, R., 1999. Incidence of immediate and delayed hypersensitivity to Centruroides antivenom. Ann, Emerg. Med. 34, 615–619.CrossRefGoogle Scholar
  38. Ma, Y., Zhao, R., He, Y., Li, S., Liu, J., Wu, Y., Cao, Z., Li, W., 2009. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal. BMC Genomics 10, 290.PubMedCrossRefGoogle Scholar
  39. Marino, A., Morabito, R., La Spada, G., 2009. Factors altering the haemolytic power of crude venom from Aiptasia mutabilis (Anthozoa) nematocysts. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 152, 418–422.PubMedCrossRefGoogle Scholar
  40. Martin-Eauclaire, M.-F., Couraud, F., 1995. Scorpion neurotoxins: effects and mechanisms, in: Chang, L.W., Dyer, R.S. (Eds.), Handbook of Neurotoxicology. Marcel Dekker, New York, pp. 683–716.Google Scholar
  41. Radhakrishna Murthy, K., Zolphaghrian, H., Medh, J.D., Kudalkar, J.A., Yeolekar, M.E., Pandit, S.P., Khopkar, M., Dave, KN., Billimoria, F.R., 1988. Disseminated intravascular coagulation and disturbances in carbohydrate and fat metabolism in acute myocarditis produced by scorpion (Buthus tamulus) venom. Indian J. Med. Red., 87, 318–325.Google Scholar
  42. Nobuhisa, I., Nakashima, K., Deshimaru, M., Ogawa, T., Shimohigashi, Y., Fukumaki, Y., Sakaki, Y., Hattori, S., Kihara, H., Ohno, M., 1996. Accelerated evolution of Trimeresurus okinavensis venom gland phospholipase A2 isozyme-encoding genes. Gene 172, 267–272.PubMedCrossRefGoogle Scholar
  43. Ogawa, T., Kitajima, M., Nakashima, K., Sakaki, Y., Ohno, M., 1995. Molecular evolution of group II phospholipases A2. J. Mol. Evol. 41, 867–877.PubMedCrossRefGoogle Scholar
  44. Ogawa, T., Nakashima, K., Nobuhisa, I., Deshimaru, M., Shimohigashi, Y., Fukumaki, Y., Sakaki, Y., Hattori, S., Ohno, M., 1996. Accelerated evolution of snake venom phospholipase A2 isozymes for acquisition of diverse physiological functions. Toxicon 34, 1229–1236.PubMedCrossRefGoogle Scholar
  45. Oliveira-Carvalho, A.L., Guimarães, P.R., Abreu, P.A., Dutra, D.L., Junqueira-de-Azevedo, I.L., Rodrigues, C.R., Ho, P.L., Castro, H.C., Zingali, R.B., 2008. Identification and characterization of a new member of snake venom thrombin inhibitors from Bothrops insularis using a proteomic approach. Toxicon 51, 659–671.PubMedCrossRefGoogle Scholar
  46. Papahadjopoulos, D., Hougie, C., Hanahan, D.J., 1962. Influence of surface charge of phospholipids on their clot-promoting. Proc. Soc. Exp. Biol. Med. 111, 412–416.Google Scholar
  47. Possani, L.D., Alagón, A.C., Fletcher, P.L., Jr., Erickson, B.W., 1977. Purification and properties of mammalian toxins from the venom of Brazilian Scorpion Tityus serrulatus Lutz and Mello. Arch. Biochem. Biophys. 180, 394–403.PubMedCrossRefGoogle Scholar
  48. Possani, L.D., Becerril, B., Delepierre, M., Tytgat, J., 1999. Scorpion toxins specific for Na+-channels. Eur. J. Biochem. 264, 287–300.PubMedCrossRefGoogle Scholar
  49. Possani, L.D., Merino, E., Corona, M., Bolivar, F., Becerril, B., 2000. Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie 82, 861–868.PubMedCrossRefGoogle Scholar
  50. Possani, L.D., Rodríguez de la Vega, R.C., 2006. Scorpion venom peptides, in: Kastin A.J. (Ed.), Handbook of Biologically Active Peptides. Elsevier, Amsterdam, pp. 339–354.CrossRefGoogle Scholar
  51. Reddy, C.R., Suvarnakumari, G., Devi, C.S., Reddy, C.N., 1972. Pathology of scorpion venom poisoning. J. Trop. Med. Hyg. 75, 98–100.PubMedGoogle Scholar
  52. Rodríguez de la Vega, R.C., Possani, L.D., 2004. Current views on scorpion toxins specific for K+-channels. Toxicon 43, 865–875.CrossRefGoogle Scholar
  53. Rodríguez de la Vega, R.C., Possani, L.D., 2005. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon 46, 831–44.CrossRefGoogle Scholar
  54. Scout, D.L., Sigler, P.B., 1994. The structural and functional roles of calcium ion in secretory phospholipases A2. Adv. Inorg. Biochem. 10, 139–155.Google Scholar
  55. Schwartz, E.F., Diego-García, E., Rodríguez de la Vega, R.C., Possani, L.D., 2007. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC Genomics 8, 119.PubMedCrossRefGoogle Scholar
  56. Schwartz, E.F., Camargos, T.S., Zamudio, F.Z., Silva, L.P., Bloch, C., Caixeta, F., Schwartz, C.A., Possani, L.D., 2008. Mass spectrometry analysis, amino acid sequence and biological activity of venom components from the Brazilian scorpion Opisthacanthus cayaporum. Toxicon 51, 1499–1508.PubMedCrossRefGoogle Scholar
  57. Schwartz, E.F., Capes, E.M., Diego-García, E., Zamudio, F.Z., Fuentes, O., Possani, L.D., Valdivia, H.H., 2009. Characterization of hadrucalcin, a peptide from Hadrurus gertschi scorpion venom with pharmacological activity on ryanodine receptors. Br. J. Pharmacol. 157, 392–403.PubMedCrossRefGoogle Scholar
  58. Singh, G., Gourinath, S., Sharma, S., Paramasivam, M., Srinivasan, A., Singh, T.P., 2001. Sequence and crystal structure determination of a basic phospholipase A2 from common krait (Bungarus caeruleus) at 2.4 Å resolution: identification and characterization of its pharmacological sites. J. Mol. Biol. 307, 1049–1059.PubMedCrossRefGoogle Scholar
  59. Sofer, S., Gueron, M., White, R., Lifshitz, M., Apte, R., 1996. Interleukin-6 release following scorpion sting in children. Toxicon 34, 389–392.PubMedCrossRefGoogle Scholar
  60. Song, Y.M., Tang, X.X., Chen, X.G., Gao, B.B., Gao, E., Bai, L., Lv, X.R., 2005. Effects of scorpion venom bioactive polypolypeptides on platelet aggregation and thrombosis and plasma 6-keto-PG F1alpha and TXB2 in rabbits and rats. Toxicon 46, 230–235.PubMedCrossRefGoogle Scholar
  61. Tan, N.H., Ponnudurai, G., 1992. Comparative study of the enzymatic, hemorrhagic, procoagulant and anticoagulant activities of some animal venoms. Comp. Biochem. Physiol. 103, 299–302.Google Scholar
  62. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. Higgins, D.G., 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24, 4876–4882.CrossRefGoogle Scholar
  63. Torres-Larios, A., Gurrola, G., Zamudio, F., Possani, L.D., 2000. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. Eur. J. Biochem. 267, 5023–5031.PubMedCrossRefGoogle Scholar
  64. Tytgat, J., Chandy, K.G., Garcia, M.L., Gutman, G.A., Martin- Eauclaire, M.-F., Van der Walt, J.J., Possani, L.D., 1999. A unified nomenclature for short-chain peptides isolated from scorpion venoms: alpha-KTx molecular subfamilies. Trends Pharmacol. Sci. 20, 444–447.PubMedCrossRefGoogle Scholar
  65. Valdez-Cruz, N.A., Batista, C.V., Zamudio, F.Z., Bosmans, F., Tytgat, J., Possani, L.D., 2004. Phaiodotoxin, a novel structural class of insect-toxin isolated from the venom of the Mexican scorpion Anuroctonus phaiodactylus. Eur. J. Biochem. 271, 4753–4761.PubMedCrossRefGoogle Scholar
  66. Valdez-Cruz, N.A., Segovia, L., Corona, M., Possani, L.D., 2007. Sequence analysis and phylogenetic relationship of genes encoding heterodimeric phospholipases A2 from the venom of the scorpion Anuroctonus phaiodactylus. Gene 396, 149–158.PubMedCrossRefGoogle Scholar
  67. Verheij, H.M., Boffa, M.C., Rothen, C., Bryckaert, M.C., Verger, R., de Haas, G.H., 1980. Correlation of enzymatic activity and anticoagulant properties of phospholipase A2. Eur. J. Biochem. 112, 25–32.PubMedCrossRefGoogle Scholar
  68. Zamudio, F.Z., Conde, R., Arévalo, C., Becerril, B., Martin, B.M., Valdivia, H.H., Possani, L.D., 1997. The mechanism of inhibition of ryanodine receptor channels by imperatoxin I, a heterodimeric protein from the scorpion Pandinus imperator. J. Biol. Chem. 272, 11886–11894.PubMedCrossRefGoogle Scholar
  69. Zeng, X.C., Wang, S.X., Li, W.X., 2002. Identification of BmKAPi, a novel type of scorpion venom peptide with peculiar disulfide bridge pattern from Buthus martensii Karsch. Toxicon 40, 1719–1722.PubMedCrossRefGoogle Scholar
  70. Zhao, K., Zhou, Y., Lin, Z., 2000. Structure of basic phospholipase A2 from Agkistrodon halys Pallas: implications for its association, hemolytic and anticoagulant activities. Toxicon 38, 901–916.PubMedCrossRefGoogle Scholar
  71. Zhu, S., Li, W., 2002. Precursors of three unique cysteine-rich peptides from the scorpion Buthus martensii Karsch. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 131, 749–756.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • N.A. Valdez-Cruz
    • 1
  • R. Conde
    • 1
  • F.Z. Zamudio
    • 1
  • L.D. Possani
    • 1
    Email author
  1. 1.Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México, Avenida Universidad 2001Cuernavaca MorelosMéxico

Personalised recommendations