Thrombin Inhibitors from Haematophagous Animals

  • Cho Yeow Koh
  • R. Manjunatha KiniEmail author


To facilitate the feeding of blood, hematophagous animals use pharmacologically active molecules to ensure free-flowing of blood at both the feeding site and within the digestion system. A number of these exogenous anticoagulants have been identified and characterized in recent years. Among them, inhibitors of thrombin form the largest group both in terms of number and diversity. To date, more than 30 different exogenous thrombin inhibitors from hematophagous animals, grouped into at least 15 unique structural classes, have been reported in the literature. In this chapter, we discuss five representative classes in detail with insights from their high resolution structures in complex with thrombin.


Salt Bridge Hydrophobic Contact Factor Versus Medicinal Leech Soft Tick 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by academic research grants from National University of Singapore, Singapore.


  1. Balashov, Y., 1984. Interaction between blood-sucking arthropods and their hosts, and its influence on vector potential. Annu. Rev. Entomol. 29, 137–156.PubMedCrossRefGoogle Scholar
  2. Betz, A., Hofsteenge, J., Stone, S.R., 1991. Role of interactions involving C-terminal nonpolar residues of hirudin in the formation of the thrombin-hirudin complex. Biochemistry 30, 9848–9853.PubMedCrossRefGoogle Scholar
  3. Betz, A., Hofsteenge, J., Stone, S.R., 1992. Interaction of the N-terminal region of hirudin with the active-site cleft of thrombin. Biochemistry 31, 4557–4562.PubMedCrossRefGoogle Scholar
  4. Bode, W., Turk, D., Karshikov, A., 1992. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human α-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci. 1, 426–471.PubMedCrossRefGoogle Scholar
  5. Braun, P.J., Dennis, S., Hofsteenge, J., Stone, S.R., 1988. Use of site-directed mutagenesis to investigate the basis for the specificity of hirudin. Biochemistry 27, 6517–6522.PubMedCrossRefGoogle Scholar
  6. Campos, I.T., Amino, R., Sampaio, C.A., Auerswald, E.A., Friedrich, T., Lemaire, H.G., Schenkman, S., Tanaka, A.S., 2002. Infestin, a thrombin inhibitor presents in Triatoma infestans midgut, a Chagas’ disease vector: gene cloning, expression and characterization of the inhibitor. Insect Biochem. Mol. Biol. 32, 991–997.PubMedCrossRefGoogle Scholar
  7. Champagne, D.E., 2004. Antihemostatic strategies of blood-feeding arthropods. Curr. Drug Targets Cardiovasc. Haematol. Disord. 4, 375–396.PubMedCrossRefGoogle Scholar
  8. Clore, G.M., Sukumaran, D.K., Nilges, M., Zarbock, J., Gronenborn, A.M., 1987. The conformations of hirudin in solution: a study using nuclear magnetic resonance, distance geometry and restrained molecular dynamics. EMBO J. 6, 529–537.PubMedGoogle Scholar
  9. Davidson, C.J., Hirt, R.P., Lal, K., Snell, P., Elgar, G., Tuddenham, E.G., McVey, J.H., 2003. Molecular evolution of the vertebrate blood coagulation network. Thromb. Haemost. 89, 420–428.PubMedGoogle Scholar
  10. Davie, E.W., Fujikawa, K., Kisiel, W., 1991. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30, 10363–10370.PubMedCrossRefGoogle Scholar
  11. Di Cera, E., 2003. Thrombin interactions. Chest 124, 11S–17S.PubMedCrossRefGoogle Scholar
  12. Dodt, J., Kohler, S., Baici, A., 1988. Interaction of site specific hirudin variants with α-thrombin. FEBS Lett. 229, 87–90.PubMedCrossRefGoogle Scholar
  13. Dodt, J., Muller, H.P., Seemuller, U., Chang, J.Y., 1984. The complete amino acid sequence of hirudin, a thrombin specific inhibitor: application of colour carboxymethylation. FEBS Lett. 165, 180–184.CrossRefGoogle Scholar
  14. Empie, M.W., Laskowski, M., Jr., 1982. Thermodynamics and kinetics of single residue replacements in avian ovomucoid third domains: effect on inhibitor interactions with serine proteinases. Biochemistry 21, 2274–2284.PubMedCrossRefGoogle Scholar
  15. Flower, D.R., 1996. The lipocalin protein family: structure and function. Biochem. J. 318(Pt 1), 1–14.PubMedGoogle Scholar
  16. Friedrich, T., Kroger, B., Bialojan, S., Lemaire, H.G., Hoffken, H.W., Reuschenbach, P., Otte, M., Dodt, J., 1993. A Kazal-type inhibitor with thrombin specificity from Rhodnius prolixus. J. Biol. Chem. 268, 16216–16222.PubMedGoogle Scholar
  17. Greinacher, A., Warkentin, T.E., 2008. The direct thrombin inhibitor hirudin. Thromb. Haemost. 99, 819–829.PubMedGoogle Scholar
  18. Grutter, M.G., 1994. Proteinase inhibitors: another new fold. Structure 2, 575–576.PubMedCrossRefGoogle Scholar
  19. Grutter, M.G., Priestle, J.P., Rahuel, J., Grossenbacher, H., Bode, W., Hofsteenge, J., Stone, S.R., 1990. Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition. EMBO J. 9, 2361–2365.PubMedGoogle Scholar
  20. Haruyama, H., Wuthrich, K., 1989. Conformation of recombinant desulfatohirudin in aqueous solution determined by nuclear magnetic resonance. Biochemistry 28, 4301–4312.PubMedCrossRefGoogle Scholar
  21. Huntington, J.A., 2005. Molecular recognition mechanisms of thrombin. J. Thromb. Haemost. 3, 1861–1872.PubMedCrossRefGoogle Scholar
  22. Huntington, J.A., 2008. How Na+ activates thrombin – a review of the functional and structural data. Biol. Chem. 389, 1025–1035.PubMedCrossRefGoogle Scholar
  23. Isawa, H., Yuda, M., Yoneda, K., Chinzei, Y., 2000. The insect salivary protein, prolixin-S, inhibits factor IXa generation and Xase complex formation in the blood coagulation pathway. J. Biol. Chem. 275, 6636–6641.PubMedCrossRefGoogle Scholar
  24. Jackman, M.P., Parry, M.A., Hofsteenge, J., Stone, S.R., 1992. Intrinsic fluorescence changes and rapid kinetics of the reaction of thrombin with hirudin. J. Biol. Chem. 267, 15375–15383.PubMedGoogle Scholar
  25. Koh, C.Y., Kazimirova, M., Nuttall, P.A., Kini, R.M., 2009. Noncompetitive inhibitor of thrombin. Chembiochem 10, 2155–2158.PubMedCrossRefGoogle Scholar
  26. Koh, C.Y., Kazimirova, M., Trimnell, A., Takac, P., Labuda, M., Nuttall, P.A., Kini, R.M., 2007. Variegin, a novel fast and tight binding thrombin inhibitor from the tropical bont tick. J. Biol. Chem. 282, 29101–29113.PubMedCrossRefGoogle Scholar
  27. Koh, C.Y., Kini, R.M., 2008. Anticoagulants from hematophagous animals. Expert Rev. Hematol. 1, 135–139.PubMedCrossRefGoogle Scholar
  28. Koh, C.Y., Kini, R.M., 2009. Molecular diversity of anticoagulants from haematophagous animals. Thromb. Haemost. 102, 437–453.PubMedGoogle Scholar
  29. Lai, R., Takeuchi, H., Jonczy, J., Rees, H.H., Turner, P.C., 2004. A thrombin inhibitor from the ixodid tick, Amblyomma hebraeum. Gene 342, 243–249.PubMedCrossRefGoogle Scholar
  30. Lane, D.A., Philippou, H., Huntington, J.A., 2005. Directing thrombin. Blood 106, 2605–2612.PubMedCrossRefGoogle Scholar
  31. Laskowski, M., Jr., Kato, I., 1980. Protein inhibitors of proteinases. Annu. Rev. Biochem. 49, 593–626.PubMedCrossRefGoogle Scholar
  32. Ledizet, M., Harrison, L.M., Koskia, R.A., Cappello, M., 2005. Discovery and pre-clinical development of antithrombotics from hematophagous invertebrates. Curr. Med. Chem. Cardiovasc. Hematol. Agents 3, 1–10.PubMedCrossRefGoogle Scholar
  33. Liu, C.C., Brustad, E., Liu, W., Schultz, P.G., 2007. Crystal structure of a biosynthetic sulfo-hirudin complexed to thrombin. J. Am. Chem. Soc. 129, 10648–10649.PubMedCrossRefGoogle Scholar
  34. Macedo-Ribeiro, S., Almeida, C., Calisto, B.M., Friedrich, T., Mentele, R., Sturzebecher, J., Fuentes-Prior, P., Pereira, P.J., 2008. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS One 3, e1624PubMedCrossRefGoogle Scholar
  35. Mans, B.J., Andersen, J.F., Schwan, T.G., Ribeiro, J.M., 2008. Characterization of anti-hemostatic factors in the argasid, Argas monolakensis: implications for the evolution of blood-feeding in the soft tick family. Insect Biochem. Mol. Biol. 38, 22–41.PubMedCrossRefGoogle Scholar
  36. Mans, B.J., Louw, A.I., Neitz, A.W., 2002. Evolution of hematophagy in ticks: common origins for blood coagulation and platelet aggregation inhibitors from soft ticks of the genus Ornithodoros. Mol. Biol. Evol. 19, 1695–1705.PubMedCrossRefGoogle Scholar
  37. Mao, S.J., Yates, M.T., Blankenship, D.T., Cardin, A.D., Krstenansky, J.L., Lovenberg, W., Jackson, R.L., 1987. Rapid purification and revised amino-terminal sequence of hirudin: a specific thrombin inhibitor of the bloodsucking leech. Anal. Biochem. 161, 514–518.PubMedCrossRefGoogle Scholar
  38. Markwardt, F., 1994. The development of hirudin as an antithrombotic drug. Thromb. Res. 74, 1–23.PubMedCrossRefGoogle Scholar
  39. Mende, K., Petoukhova, O., Koulitchkova, V., Schaub, G.A., Lange, U., Kaufmann, R., Nowak, G., 1999. Dipetalogastin, a potent thrombin inhibitor from the blood-sucking insect. Dipetalogaster maximus cDNA cloning, expression and characterization. Eur. J. Biochem. 266, 583–590.PubMedCrossRefGoogle Scholar
  40. Myles, T., Le Bonniec, B.F., Betz, A., Stone, S.R., 2001. Electrostatic steering and ionic tethering in the formation of thrombin-hirudin complexes: the role of the thrombin anion-binding exosite-I. Biochemistry 40, 4972–4979.PubMedCrossRefGoogle Scholar
  41. Nienaber, J., Gaspar, A.R., Neitz, A.W., 1999. Savignin, a potent thrombin inhibitor isolated from the salivary glands of the tick Ornithodoros savignyi (Acari: Argasidae). Exp. Parasitol. 93, 82–91.PubMedCrossRefGoogle Scholar
  42. Noeske-Jungblut, C., Haendler, B., Donner, P., Alagon, A., Possani, L., Schleuning, W.D., 1995. Triabin, a highly potent exosite inhibitor of thrombin. J. Biol. Chem. 270, 28629–28634.PubMedCrossRefGoogle Scholar
  43. Page, M.J., Macgillivray, R.T., Di Cera, E., 2005. Determinants of specificity in coagulation proteases. J. Thromb. Haemost. 3, 2401–2408.PubMedCrossRefGoogle Scholar
  44. Qiu, X., Padmanabhan, K.P., Carperos, V.E., Tulinsky, A., Kline, T., Maraganore, J.M., Fenton, J.W., 1992. Structure of the hirulog 3-thrombin complex and nature of the S’ subsites of substrates and inhibitors. Biochemistry 31, 11689–11697.PubMedCrossRefGoogle Scholar
  45. Ribeiro, J.M., 1995. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect. Agents Dis. 4, 143–152.PubMedGoogle Scholar
  46. Ribeiro, J.M., Francischetti, I.M., 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu. Rev. Entomol. 48, 73–88.PubMedCrossRefGoogle Scholar
  47. Richardson, J.L., Fuentes-Prior, P., Sadler, J.E., Huber, R., Bode, W., 2002. Characterization of the residues involved in the human α-thrombin-haemadin complex: an exosite II-binding inhibitor. Biochemistry 41, 2535–2542.PubMedCrossRefGoogle Scholar
  48. Richardson, J.L., Kroger, B., Hoeffken, W., Sadler, J.E., Pereira, P., Huber, R., Bode, W., Fuentes-Prior, P., 2000. Crystal structure of the human α-thrombin-haemadin complex: an exosite II-binding inhibitor. EMBO J. 19, 5650–5660.PubMedCrossRefGoogle Scholar
  49. Rydel, T.J., Ravichandran, K.G., Tulinsky, A., Bode, W., Huber, R., Roitsch, C., Fenton, J.W., 1990. The structure of a complex of recombinant hirudin and human α-thrombin. Science 249, 277–280.PubMedCrossRefGoogle Scholar
  50. Rydel, T.J., Tulinsky, A., Bode, W., Huber, R., 1991. Refined structure of the hirudin-thrombin complex. J. Mol. Biol. 221, 583–601.PubMedCrossRefGoogle Scholar
  51. Scacheri, E., Nitti, G., Valsasina, B., Orsini, G., Visco, C., Ferrera, M., Sawyer, R.T., Sarmientos, P., 1993. Novel hirudin variants from the leech Hirudinaria manillensis. Amino acid sequence, cDNA cloning and genomic organization. Eur. J. Biochem. 214, 295–304.PubMedCrossRefGoogle Scholar
  52. Scharf, M., Engels, J., Tripier, D., 1989. Primary structures of new ’iso-hirudins’. FEBS Lett. 255, 105–110.PubMedCrossRefGoogle Scholar
  53. Skrzypczak-Jankun, E., Carperos, V.E., Ravichandran, K.G., Tulinsky, A., Westbrook, M., Maraganore, J.M., 1991. Structure of the hirugen and hirulog 1 complexes of α-thrombin. J. Mol. Biol. 221, 1379–1393.PubMedGoogle Scholar
  54. Steiner, V., Knecht, R., Bornsen, K.O., Gassmann, E., Stone, S.R., Raschdorf, F., Schlaeppi, J.M., Maschler, R., 1992. Primary structure and function of novel O-glycosylated hirudins from the leech Hirudinaria manillensis. Biochemistry 31, 2294–2298.PubMedCrossRefGoogle Scholar
  55. Stone, S.R., Hofsteenge, J., 1986. Kinetics of the inhibition of thrombin by hirudin. Biochemistry 25, 4622–4628.PubMedCrossRefGoogle Scholar
  56. Strube, K.H., Kroger, B., Bialojan, S., Otte, M., Dodt, J., 1993. Isolation, sequence analysis, and cloning of haemadin. An anticoagulant peptide from the Indian leech. J. Biol. Chem. 268, 8590–8595.PubMedGoogle Scholar
  57. van de Locht, A., Lamba, D., Bauer, M., Huber, R., Friedrich, T., Kroger, B., Hoffken, W., Bode, W., 1995. Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. EMBO J. 14, 5149–5157.PubMedGoogle Scholar
  58. van de Locht, A., Stubbs, M.T., Bode, W., Friedrich, T., Bollschweiler, C., Hoffken, W., Huber, R., 1996. The ornithodorin-thrombin crystal structure, a key to the TAP enigma? EMBO J. 15, 6011–6017.PubMedGoogle Scholar
  59. Vitali, J., Martin, P.D., Malkowski, M.G., Robertson, W.D., Lazar, J.B., Winant, R.C., Johnson, P.H., Edwards, B.F., 1992. The structure of a complex of bovine α-thrombin and recombinant hirudin at 2.8-Å resolution. J. Biol. Chem. 267, 17670–17678.PubMedGoogle Scholar
  60. Wallace, A., Dennis, S., Hofsteenge, J., Stone, S.R., 1989. Contribution of the N-terminal region of hirudin to its interaction with thrombin. Biochemistry 28, 10079–10084.PubMedCrossRefGoogle Scholar
  61. Warkentin, T.E., Greinacher, A., Koster, A., 2008. Bivalirudin. Thromb. Haemost. 99, 830–839.PubMedGoogle Scholar
  62. Zhang, Y., Ribeiro, J.M., Guimaraes, J.A., Walsh, P.N., 1998. Nitrophorin-2: a novel mixed-type reversible specific inhibitor of the intrinsic factor-X activating complex. Biochemistry 37, 10681–10690.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Protein Science Laboratory, Department of Biological SciencesNational University of SingaporeSingaporeSingapore

Personalised recommendations