Methodologies for the Measurement of Water Flow in Grapevines



Many methods are available to calculate mass flow of water in the transpiration stream by using heat as a tracer. Measurements can be taken in herbaceous and woody tissues, and in any conductive organ including roots. Depending of the method, measurements are taken either in the part of the conductive organ where the sensors are located, or in the whole perimeter of the conductive organ. Some methods integrate the sap flow in the whole sapwood, while others give information to calculate sap flow at different depths below the cambium. Calibration is convenient in all cases, being compulsory for the invasive methods, since probe insertion alters the xylem characteristics. This chapter describes two main groups of methods, invasive and non-invasive. For each method, brief theoretical information and practical considerations are given. All the information help the users to choose the most suitable method for his/her own purposes.


Heat Balance Magnetic Field Gradient Heat Pulse Conductive Organ Stem Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Heat pulse velocity


Heat pulse method


Compensation heat pulse


Heat dissipation


Heat field deformation


Heat ratio method


Stem heat balance


Trunk heat balance



The authors wish to acknowledge Mike van Bavel (Dynamax), Diego Intrigliolo and Enrique Fernández for their contributions on this chapter as specialists in sap flow techniques and for allowing use of pictures and schemes. Funding was provided by the Spanish Ministry of Education (project AGL 2008-04525-02-01). J. Escalona benefit from Balearic Government and Balearic University.


  1. Baker JM., Van Bavel CHM (1987) Measurement of mass flow of water in the stems of herbaceous plants. Plant Cell Environ 10:777–782Google Scholar
  2. Balek J, Pavlik O (1977) Sap stream velocity as an indicator of the transpirational process. J Hydrol 34:193–200CrossRefGoogle Scholar
  3. Becker P, Edwards WRN (1999) Corrected heat capacity of wood for sap flow calculations. Tree Physiol 19:767–768PubMedCrossRefGoogle Scholar
  4. Braun P, Schmid J (1999a) Sap flow measurements in grapevine (Vitis vinifera L.) 1. Stem morphology and use of the heat balance method. Plant Soil 215:39–45CrossRefGoogle Scholar
  5. Braun P, Schmid J (1999b) Sap flow measurements in grapevine (Vitis vinifera L.) 2. Granier measurements. Plant Soil 215:47–55CrossRefGoogle Scholar
  6. Burguess SSO, Adams MA, Turner NC, Beverly CR, Ong CK, Khan AAH, Bleby TM (2001) An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol 21:589–598CrossRefGoogle Scholar
  7. Calo A, Giorgessi F, Sansone L, Tomasi D, Zerbi G (1999) Recherches sur le rapport entre le flux de seve, la transpiration et la vigueur dans la vigne selon le mode de conduite. Vitis 38:7–13Google Scholar
  8. Cermak J, Deml M, Penka M (1972) A new method of sap flow rate determination in trees. Biol Plantarum 15:171–178CrossRefGoogle Scholar
  9. Cohen Y. Fuchs M. and Green G.C. 1981. Improvement of the heat-pulse method for determining sal flow in tress. Plant Cell Environ 4:391–397CrossRefGoogle Scholar
  10. Dragoni D, Lakso AN, Piccione RM, Tarara JM (2006) Transpiration in grapevines in the humid. Northeastern United States. Am J Enol Vitic 57(4) :460–467Google Scholar
  11. Eastham J. and Gray S. 1988. A preliminary evaluation of the suitability of sap flow sensors for use in scheduling vineyard irrigation. Am J Enol Vitic 49:171–176Google Scholar
  12. Escalona J, Flexas J, Medrano H (2002) Drought effects on water flow, photosynthesis and growth of potted grapevines. Vitis 41:57–62Google Scholar
  13. Granier A (1985) Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann Sci Forest 42:193–200CrossRefGoogle Scholar
  14. Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol 3:171–176CrossRefGoogle Scholar
  15. Green SR, Mcnaughton KG, Clothier BE (1989) Nocturnal water use by kiwifruit and apples. Agric Forest Meteor 48:251–261CrossRefGoogle Scholar
  16. Green S, Clothier B, Jardine B (2003) Theory and practical application of heat pulse to measure sap flow. Agron J 95:1371–1379CrossRefGoogle Scholar
  17. Grime VL, Morison JIL, Simmonds LP (1995) Sap flow measurements from stem heat balances: a comparison of constant with variable power methods. Agric Forest Meteor 74:27–40CrossRefGoogle Scholar
  18. Helfter C, Shephard JD, Martínez-Vilalta J, Mencuccini M, Hand DA (2007) Noninvasive optical system for the measurement of xylem and phloem sap flow in woody plants of small stem size. Tree Physiol 27:169–179PubMedCrossRefGoogle Scholar
  19. Huber B (1932) Beobachtung und messung pflanzicher sartströme. Ber Deuch Bot Ges 50:89–109Google Scholar
  20. Intrigliolo DS, Lasko AN, Piccioni RM (2009) Grapevine cv. Riesling water use in the northeast United States. Irrig Sci 27:253–262CrossRefGoogle Scholar
  21. Ittner E (1968) Der Tagesgang der Geschwindigkeit des Transpirationsstromes im Stamm einer 75-jahringer Fichte. Oec Plant 3:177–183Google Scholar
  22. Lascano RG, Baumhardt RL, Lipe WN (1992) Measurement of water flow in young grapevines using the stem heat balance method. Am J Enol Vitic 49:693–700Google Scholar
  23. Marshall DC (1958) Measurement of sap flow in conifers by heat transport. Plant Physiol 33:385–396PubMedCrossRefGoogle Scholar
  24. Nadezhdina N (1999) Sap flow index as an indicator of plant water status. Tree Physiol 19:885–891PubMedCrossRefGoogle Scholar
  25. Nadezhdina N, Cermák J, Nadezhdin V (1998) Heat field deformation method for sap flow measurements. In: Cermák J, Nadezhdina N (eds) Measuring sap flow in intact plants. IUFRO Publications, Publishing House of Mendel University, Brno, Czech Republic, pp 72–92Google Scholar
  26. Nadezhdina N, Cermák J, Ceulemans R (2002) Radial pattern of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors. Tree Physiol 22:907–918PubMedCrossRefGoogle Scholar
  27. Peuke AD, Rokitta M, Zimmermann U, Schreiber L, Haase A (2001) Simultaneous measurement of water flow velocity and solute transport in xylem and phloem of adult plants of ricinus communis over a daily time course by nuclear magnetic resonance spectrometry. Plant Cell Environ 24:491–503CrossRefGoogle Scholar
  28. Regalado CM, Ritter A (2007) An alternative method to estimate zero flow temperature differences for Granier’s thermal dissipation technique. Tree Physiol 27:1093–1102PubMedCrossRefGoogle Scholar
  29. Richards D (1983) The grape root system. . Hort Rev 5:127–168Google Scholar
  30. Sakuratani T (1981) A heat balance method for measuring water flux in the stem of intact plants. J Agric Meteor 37:9–17CrossRefGoogle Scholar
  31. Smith DM, Allen SJ (1996) Measurement of sap flow in plant stems. J Exp Bot 47:1833–1844CrossRefGoogle Scholar
  32. Steinberg S, Bavel CHM, McFarland MJ (1989) A gauge to measure mass flow rate of sap in stems and trunks of woody plants. J Am Soc Hort Sci 117:466–472Google Scholar
  33. Swanson RH (1962) An instrument for detecting sap movement in woody plants. Rochy Mountains Forest and Range Experiment Station, Fort Collings CO paper no 68 16pGoogle Scholar
  34. Swanson RH (1994) Significant historical developments in thermal methods for measuring sap flow in trees. Agric Forest Meteor 72:113–132CrossRefGoogle Scholar
  35. Swanson RH, Whitfield DWA (1981) A numerical-analysis of heat pulse velocity theory and practice. J Exp Bot 32:221–239CrossRefGoogle Scholar
  36. Tarara JM., Fergurson JC (2006) Two algorithms for variable power control of heat- balance sap flow gauges under high flow rates. Agr J 98:830–838CrossRefGoogle Scholar
  37. Tatarinov F, Kucera J, Cienciala E (2005) The analysis of physical background of tree sap flow measurements based on thermal methods. Measur Sci Technol 16:1157–1169CrossRefGoogle Scholar
  38. Vieweg GH, Ziegler H (1960) Thermoelektrische Registrierung der Gerchwindikkeit des Transpirationsstromes I. Deutsch Botan Ges Ber 73:221–226Google Scholar
  39. Xia YE, Sarafis E, Campbell E, Callaghan P (1993). Non invasive imaging of water flow in plants by NMR microscopy. Protoplasma 173:170–176CrossRefGoogle Scholar
  40. Weibel FP, Boersma K (1995) An improved stem heat balance method using analogue heat control. Agric Forest Meteor 75:191–208CrossRefGoogle Scholar
  41. Zimmermann MH (1983) Xylem Structure and the ascent of sap. Springer Verlag, Heidelberg. New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies Universitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.Departamento de Biologia, Grup de Recerca en Biologia de les Plantes en Condicions MediterràniesUniversitat de les Illes BalearsPalma de MallorcaSpain

Personalised recommendations