Advertisement

Autonomous Systems for Plant Protection

  • Hans W. Griepentrog
  • Arno Ruckelshausen
  • Rasmus N. Jørgensen
  • Ivar Lund
Chapter

Abstract

Advances in automation are demanded by the market mainly as a response to high labor costs. Robotic outdoor systems are ready to allow not only economically viable operations but also increased efficiency in agriculture, horticulture and forestry. The aim of this chapter is to give examples of autonomous operations related to crop protection probably commercially available in the near future. Scouting and monitoring together with the efficient application of chemicals or mechanical treatments are operations which can be successful automated. Drawbacks are that current systems are lacking robust and safe behaviors. In general the potential of saving e.g. of herbicides are huge when high precision targeting based on individual weed plant detections is used.

Keywords

Weed Plant Driving Direction Tractor Driver Minimize Exposure Time Cross Track Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Astrand B, Baerveldt AJ (2002) An agricultural mobile robot with vision-based perception for mechanical weed control. Auton Robots 13:21–25CrossRefGoogle Scholar
  2. Astrand B, Baerveldt AJ (2005) A vision based row-following system for agricultural field machinery. Mechatronics 15:251–269CrossRefGoogle Scholar
  3. Bak T, Jakobsen H. (2004) Agricultural robotic platform with four wheel steering for weed detection. Biosys Eng 87:125–136CrossRefGoogle Scholar
  4. Blackmore BS, Griepentrog HW, Fountas S, Gemtos T (2007) A specification for an autonomous crop production mechanization system. Agricultural Engineering International: CIGR Ejournal. Manuscript PM 06 032. vol. IX. AprilGoogle Scholar
  5. Blackmore BS, Griepentrog HW, Nielsen H et al (2004) Development of a deterministic autonomous tractor. Proceeding CIGR, Bejing , 11 November 2004Google Scholar
  6. Christensen S, Heisel T, Walter AM, Graglia E (2003) A decision algorithm for patch spraying. Weed Res 43:276–284CrossRefGoogle Scholar
  7. Christensen S, Sogaard HT, Kudsk P et al (2009) Site-specific weed control technologies. Weed Res 49:233–241CrossRefGoogle Scholar
  8. Dijksterhuis HL, Van Willigenburg LG, Van Zuydam RP (1998) Centimetre-precision guidance of moving implements in the open field: a simulation based on GPS measurements. Comput Electron Agric 20:185–197CrossRefGoogle Scholar
  9. Downey D, Giles D, Slaughter DC (2003) Ground based vision identification for weed mapping using DGPS. Proceedings ASAE annual international meeting Las Vegas, Nevada, ASAE, paper no. 03-1005Google Scholar
  10. Fender F, Hanneken M, In der Stroth S et al (2006) Sensor fusion meets GPS – Individual plant detection. Proceedings CIGR EurAgEng/VDI-MEG, pp 279–280Google Scholar
  11. Garcia-Alegre MC, Ribeiro A, Garcia-Perez L et al (2001) Autonomous robot in agricultural tasks. In: Grenier G, Blackmore BS (eds) Proceedings of the 3rd european conference on precision agriculture ECPA, Montpellier, 18 June 2001Google Scholar
  12. Gerhards R, Oebel H (2006) Practical experiences with a system for site specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Res 46:185–193CrossRefGoogle Scholar
  13. Giles DK, Downey D, Slaughter DC et al (2004) Herbicide micro-dosing for weed control in field-grown processing tomatoes. Appl Eng Agr 20:735–743Google Scholar
  14. Graglia E (2004) Importance of herbicide concentration, number of droplets and droplet size on growth of Solanum nigrum L, using droplet application of glyphosate. Proceedings XIIème Colloque International sur la Biologie des Mauvaises Herbes, Dijon, 31 August–2 September 2004Google Scholar
  15. Granot R (2002) Architecture for human supervised autonomously controlled off-road equipment. In: Proceedings automation technology for off-road equipment (ATOE), Chicago; ASAE, St. Joseph, 26 July 2002, pp 24–32Google Scholar
  16. Griepentrog HW, Blackmore BS (2007) Autonomous crop establishment and control system. In: Proceedings land-technik engineering the future (AgEng 2007) – Engineering solutions for energy and food production, Hanover; VDI-Verlag, Duesseldorf, 9 November 2007, pp 175–181Google Scholar
  17. Griepentrog HW, Norremark M, Nielsen H, Blackmore BS (2005) Seed mapping of sugar beet. Prec Agric 6:157–165CrossRefGoogle Scholar
  18. Grift TE, Zhang Q, Kondo N, Ting KC (2008) Review of automation and robotics for the bio-industry. J Biomechatr Eng 1:37–54Google Scholar
  19. Home M. (2003) An investigation into the design of cultivation systems for inter- and intra-row weed control. Unpublished PhD thesis. Cranfield University, National Soil Resources Institute, Engineering Group, SilsoeGoogle Scholar
  20. Iida M, Donghyeon Kang D (2008) Localization of CO2 source by a hexapod robot equipped with an anemoscope and a gas sensor. Comput Electron Agric 63:73–80CrossRefGoogle Scholar
  21. Jensen PK, Spliid NH (2003) Deposition of pesticides on the soil surface. Pesticides Research, 65. Danish Environmental Protection Agency, 59 ppGoogle Scholar
  22. Jorgensen RN, Sørensen CG, Pedersen JM et al (2007a) Hortibot – A system design of a robotic tool carrier for high-tech plant nursing. CIGR E-J AE Sci Resand Dev IX:13 ppGoogle Scholar
  23. Jorgensen RN, Sorensen CG, Sogaard HT et al (2007b) Methodology for a labour extensive and semi-automated field trial design using autoguidance and conventional machinery. In: Stafford JV (ed) Proceedings of the 6th european conference on precision agriculture (ECPA), Skiathos, Greece, Wageningen Press, Wageningen, pp 441–448Google Scholar
  24. Klose R, Ruckelshausen A, Thiel M, Marquering J (2008) Weedy – a sensor fusion based autonomous field robot for selective weed control. Proceedings of the 66th International Conference Agricultural Engineering/AgEng, pp 167–172Google Scholar
  25. Krutz GW (1984) Future use of robots in agriculture. Proceedings of the 1st international conference on robotics and intelligent machines in agriculture, pp 15–29Google Scholar
  26. Laber H (1999) Effizienz mechanischer Unkrautregulationsmaßnahmen im Freilandgemüsebau. Unpublished PhD thesis, University of Hanover, Faculty of Horticulture, HanoverGoogle Scholar
  27. Lee WS, Slaughter DC, Giles DK (1999) Robotic weed control system for tomatoes. Prec Agric 1:95–113CrossRefGoogle Scholar
  28. Lund I, Christensen S, Jensen LA et al (2008) Cellesprøjtning af ukrudt i majs (Cell spraying of weeds in maize) Bekæmpelsesmiddelforskning fra Miljøstyrelsen. Nr. 123, 90 ppGoogle Scholar
  29. Mathiassen SK, Kudsk P, Lund I (2008) Adjuvants for single droplet application of glyphosate. Proceedings of the 5th international weed science congress, VancouverGoogle Scholar
  30. Meier U, Bleiholder H (2007) The BBCH scale – codification and description of phenological growth stages of plants and their international use in agricultural research. Proceedings of the international symposium agricultural field trials – Today and tomorrow, Stuttgart-Hohenheim, 08–10 October 2007, pp 122–125Google Scholar
  31. Mitchell HB (2007) Multi-sensor data fusion. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  32. Nagasaka Y, Zhang Q, Kanetani Y, Umeda N (2004) An autonomous field watching-dog robot for information collection in agricultural fields. Proc ASAE Annual Meeting, Ottawa, August 2004, paper no 043091Google Scholar
  33. Noack PO, Muhr T, Demmel M (2006) GIS and GPS systems enhancing plot parcel creation. In: Proceedings of the Automation Technology for Off-Road Equipment (ATOE), Bonn, 9 September, pp 139–144Google Scholar
  34. Pilarski T, Happold M, Pangels H et al (2002) The demeter system for automated harvesting. Autonomous Robots 13:9–20CrossRefGoogle Scholar
  35. Ruckelshausen A (2007) Autonomous robots in agricultural field trials. Proceedings of the international symposium agricultural field trials – Today and tomorrow, Stuttgart-Hohenheim, pp 190–197Google Scholar
  36. Ruckelshausen A, Biber P, Dorna M et al (2009) BoniRob – an autonomous field robot platform for individual plant phenotyping. Proceedings of the european conference on precision agriculture (ECPA), WageningenGoogle Scholar
  37. Ruckelshausen A, Dzinaj T, Gelze F et al (1999) Microcontroller-based multisensor system for online crop/weed detection. Proceedins of the Brighton conference, 2, pp 601–606Google Scholar
  38. Siciliano B, Khatib O (2008) Springer handbook of robotics. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  39. Sogaard HT, Lund I (2007) Application accuracy of a machine vision-controlled robotic micro-dosing system. Biosys Eng 96:315–322CrossRefGoogle Scholar
  40. Soerensen CG, Norremark M, Jorgensen RN et al (2007) Hortibot – Feasibility study of a plant nursing robot performing weeding operations – part IV. Proceedings of the ASABE annual international meeting, Minneapolis, 17 June 2007Google Scholar
  41. Sogaard HT, Olsen HJ (2003) Determination of crop rows by image analysis without segmentation. Comput Electron Agric 38:141–158CrossRefGoogle Scholar
  42. Thomas E (2006) Feldversuchswesen. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  43. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, CambridgeGoogle Scholar
  44. Tillett ND (1991) Automatic guidance sensors for agricultural field machines – a review. J Agric Eng Res 50:167–187CrossRefGoogle Scholar
  45. Tillett ND, Hague T, Miles SJ (2002) Inter-row vision guidance for mechanical weed control in sugar beet. Comput Electron Agric 33:163–177CrossRefGoogle Scholar
  46. van Evert F, van der Heijden G, Lotz L et al (2007) A mobile field robot with vision-based detection of volunteer potato plants in a corn crop. Weed Technol 20:853–861CrossRefGoogle Scholar
  47. Van Zuydam RP, Sonneveld C, Naber H (1995) Weed control in sugar beet by precision guided implements. Crop Prot 14:335–340CrossRefGoogle Scholar
  48. Zeitzew MA (2007) Autonomous utility mower. Agricultural engineering international - The CIGR Ejournal IX (July)Google Scholar

Copyright information

© Springer Science+Business Media B.V.  2010

Authors and Affiliations

  • Hans W. Griepentrog
    • 1
  • Arno Ruckelshausen
    • 2
  • Rasmus N. Jørgensen
    • 3
  • Ivar Lund
    • 4
  1. 1.Department of Agriculture and EcologyFaculty of Life Sciences, University of CopenhagenTaastrupDenmark
  2. 2.Faculty of Engineering and Computer ScienceUniversity of Applied Sciences OsnabrückOsnabrueckGermany
  3. 3.Institute of Agricultural Engineering, University of Southern DenmarkOdense MDenmark
  4. 4.Department of Industrial and Civil EngineeringFaculty of Engineering, University of Southern DenmarkOdense MDenmark

Personalised recommendations