Assessing Nutrient Status of Microalgae Using Chlorophyll a Fluorescence

Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 4)

Abstract

Phytoplankton require carbon, nitrogen and phosphorus in the approximate elemental ratio 106:16:1 (Redfield 1958), although this can vary among different taxa and growth conditions (Geider and La Roche 2002; Ho et al. 2003; Sterner et al. 2008). Other nutrients, including iron, calcium, manganese, copper and zinc are also required in smaller and varying amounts (Morel and Hudson 1985). Silica can also be limiting to the growth of diatoms (Carrick and Lowe 2007; Shipe et al. 2007). If the concentration of a particular nutrient drops in real terms or in relation to the other key nutrients, it may limit the growth rate, maximum biomass and/or species composition of a phytoplankton community.

Keywords

Nutrient Limitation Nitrogen Limitation Cyclic Electron Flow Iron Limitation Dunaliella Tertiolecta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Beardall J, Young EB, Roberts SC (1996) Interactions between photosynthesis and the acquisition of N and P in Dunaliella. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol V. Kluwer, Dordrecht, pp 435–438Google Scholar
  2. Beardall J, Berman T, Heraud P, Omo Kadiri M, Light BR, Patterson G, Roberts S, Sulzberger B, Sahan E, Uehlinger U, Wood B (2001a) A comparison of methods for detection of phosphate limitation in microalgae. Aquat Sci 63:107–121CrossRefGoogle Scholar
  3. Beardall J, Young EB, Roberts SC (2001b) Approaches for determining phytoplankton nutrient limitation. Aquat Sci 63:44–69CrossRefGoogle Scholar
  4. Behrenfeld MJ, Bale AJ (1996) Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383:508–511CrossRefGoogle Scholar
  5. Behrenfeld MJ, Kolber ZS (1999) Widespread iron limitation of phytoplankton in the South Pacific Ocean. Sci 283:840–843CrossRefGoogle Scholar
  6. Behrenfeld MJ, Lee H, Small LF (1994) Interactions between nutritional status and long-term responses to ultraviolet-B radiation stress in a marine diatom. Mar Biol 118:523–530CrossRefGoogle Scholar
  7. Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los OS, Tucker CJ, Falkowski PG, Field CB, Frouin R, Esaias WE, Kolber DD, Pollack NH (2001) Biospheric primary production during an ENSO transition. Science 291:2594–2597CrossRefGoogle Scholar
  8. Berden-Zrimec M, Drinovec L, Molinari I, Zrimec A, Fonda Umani S, Monti M (2008) Delayed fluorescence as a measure of nutrient limitation in Dunaliella tertiolecta. J Photochem Photobiol B: Biol 92:13–18CrossRefGoogle Scholar
  9. Berges JA, Charlebois DA, Mauzerall DC, Falkowski PG (1996) Differential effects of nitrogen limitation on photosynthetic efficiency of Photosystem I and II in microalgae. Plant Physiol 110:689–696Google Scholar
  10. Bertilsson S, Berglund O, Karl DM, Chisholm SW (2003) Elemental composition of marine Prochlorococcus and Synechococcus: implications for the ecological stoichiometry of the sea. Limnol Oceanogr 48:1721–1731CrossRefGoogle Scholar
  11. Birch PB, Gordon DM (1981) Nitrogen and phosphorus nutrition of Cladophora in the Peel-Harvey estuarine system, Western Australia. Bot Mar 24:381–387CrossRefGoogle Scholar
  12. Blomqvist S, Gunnars A, Elmgren R (2004) Why the limiting nutrient differs between temperate coastal seas and freshwater lakes: a matter of salt. Limnol Oceanogr 49:2236–2241CrossRefGoogle Scholar
  13. Boyd PW, LaRoche J, Gall M, Frew R, McKay RM (1999) Role of iron, light, and silicate in controlling algal biomass in subantarctic waters SE of New Zealand. J Geophys Res 104:13391–13404CrossRefGoogle Scholar
  14. Brooks AS, Edington DN (1994) Biogeochemical control of phosphorus cycling and primary production in Lake Michigan. Limnol Oceanogr 39:961–968CrossRefGoogle Scholar
  15. Caraco NF, Cole JJ, Likens GE (1989) Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341:316–318CrossRefGoogle Scholar
  16. Caraco N, Cole JJ, Likens GE (1990) A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry 9:277–290CrossRefGoogle Scholar
  17. Carrick HJ, Lowe RL (2007) Nutrient limitation of benthic algae in Lake Michigan: the role of silica. J Phycol 43:228–34CrossRefGoogle Scholar
  18. Cullen JJ, Davis RF (2003) The blank can make a big difference in oceanographic measurements. Limnol Oceanogr Bull 12:29–35Google Scholar
  19. Cullen JJ, Neale PJ, Lesser MP (1992) Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258:646–650CrossRefGoogle Scholar
  20. Davey M, Tarran GA, Mills MM, Ridame C, Geider RJ, La Roche J (2008) Nutrient limitation of picophytoplankton photosynthesis and growth in the eastern tropical North Atlantic. Limnol Oceanogr 42:1722–1733CrossRefGoogle Scholar
  21. Debaar HJW (1994) Von Liebig law of the minimum and plankton ecology (1899–1991). Prog Oceanogr 33:347–386CrossRefGoogle Scholar
  22. Delosme R (1991) Electron transfer from cytochrome f to photosystem I in green algae. Photosynthesis Res 29:45–54Google Scholar
  23. Delphin E, Duval J, Etienne A, Kirilovsky D (1996) State transitions or ΔpH-dependent quenching of photosystem II fluorescence in red algae. Biochemistry 35:9435–9445CrossRefGoogle Scholar
  24. Elser JJ, Kimmel BL (1986) Alteration of phytoplankton phosphorus status during enrichment experiments - implications for interpreting nutrient enrichment bioassay results. Hydrobiologia 133:217–222CrossRefGoogle Scholar
  25. Fisher TR, Gustafson AB, Sellner K, Lacuture R, Haas LW, Margnien R, Karrh R, Michael B (1999) Spatial and temporal variation in resource limitation in Chesapeake Bay. Mar Biol 133:763–778CrossRefGoogle Scholar
  26. Frost PC, Xenopoulos MA (2002) Ambient solar ultraviolet radiation and its effects on phosphorus flux into boreal lake phytoplankton communities. Can J Fish Aquat Sci 59:1090–1095CrossRefGoogle Scholar
  27. Ganf GS, Stone SJL, Oliver RL (1986) Use of protein to carbohydrate ratios to analyse for nutrient deficiency in phytoplankton. Aust J Mar Freshwater Res 37:183–197CrossRefGoogle Scholar
  28. Gauthier DA, Turpin DH (1997) Interactions between inorganic phosphate (Pi) assimilation, photosynthesis and respiration in the Pi-limited green alga Selenastrum minutum. Plant Cell Env 20:12–24CrossRefGoogle Scholar
  29. Geider RJ, La Roche J (2002) Redfield revisited: variability in the N:P ratio of phytoplankton and its biochemical basis. Eur J Phycol 37:1–17CrossRefGoogle Scholar
  30. Geider RJ, LaRoche J (1994) The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynth Res 39:275–301CrossRefGoogle Scholar
  31. Gerringa LJA, de Baar HJW, Timmermans KR (2000) A comparison of iron limitation of phytoplankton in natural oceanic waters and laboratory media conditioned with EDTA. Mar Chem 68:335–346CrossRefGoogle Scholar
  32. Gotham IJ, Rhee G (1981) Comparative kinetic studies of phosphate-limited growth and phosphate uptake in phytoplankton in continuous culture. J Phycol 17:257–265CrossRefGoogle Scholar
  33. Graziano LM, LaRoche J, Geider RJ (1996) Physiological response to phosphorus limitation in batch and steady state cultures of Dunaliella tertiolecta (Chlorophyta): a unique stress protein as an indicator of phosphate deficiency. J Phycol 32:825–838CrossRefGoogle Scholar
  34. Greene RM, Geider RJ, Kolber ZS, Falkowski PG (1992) Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol 100:565–575CrossRefGoogle Scholar
  35. Greene RM, Kolber ZS, Swift DG, Tindale NW, Falkowski PG (1994) Physiological limitation of phytoplankton photosynthesis in the eastern equatorial Pacific determined from variablility in the quantum yield of fluorescence. Limnol Oceanogr 29:1061–1074CrossRefGoogle Scholar
  36. Guildford SJ, Hecky RE (2000) Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnol Oceanogr 45:1213–1223CrossRefGoogle Scholar
  37. Guildford SJ, Hecky RE, Taylor WD, Mugidde R, Bootsma HA (2003) Nutrient enrichment experiments in tropical Great Lakes Malawi/Nyasa and Victoria. J Great Lakes Res 29:89–106CrossRefGoogle Scholar
  38. Hayes PK, Whitaker TM, Fogg GE (1984) The distribution and nutrient status of phytoplankton in the Southern Ocean between 20° and 70°W. Polar Biol 3:153–165CrossRefGoogle Scholar
  39. Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol Oceanogr 33:796–822CrossRefGoogle Scholar
  40. Ho TY, Quigg A, Finkel ZV, Milligan AJ, Wyman K, Falkowski PG, Morel FMM (2003) The elemental composition of some marine phytoplankton. J Phycol 39:1145–1159CrossRefGoogle Scholar
  41. Holland DP, Roberts SC, Beardall J (2004) Assessment of the nutrient status of phyoplankton: A comparison between ­conventional bioassays and nutrient-induced fluorescence transients (NIFTs). Ecol Indic 4:149–159CrossRefGoogle Scholar
  42. Holmes JJ, Weger HG, Turpin DH (1989) Chlorophyll a fluorescence predicts total photosynthetic electron flow to CO2 or NO3/NO2 under transient conditions. Plant Physiol 91:331–337CrossRefGoogle Scholar
  43. Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. Annu Rev Ecol Syst 19:898–910CrossRefGoogle Scholar
  44. Iglesias AA, Plaxton WC, Podesta FE (1993) The role of inorganic phosphate in the regulation of C4 photosynthesis. Photosynth Res 35:205–211CrossRefGoogle Scholar
  45. Jansen MAK, Greenberg BM, Edelman M, Matto AK, Gaba V (1996) Accelerated degradation of the D2 protein of Photosystem II under ultraviolet radiation. Photochem Photobiol 63:814–817CrossRefGoogle Scholar
  46. Karl DM (1999) A sea of change: biogoechemical variability in the North Pacific subtropical gyre. Ecosystems 2:181–214CrossRefGoogle Scholar
  47. Knowles R (1982) Denitrification. Microbiol Rev 46:43–70Google Scholar
  48. Kolber ZS, Zehr J, Falkowski PG (1988) Effects of growth irradience and nitrogen limitation on photosynthetic energy conversion in Photosystem II. Plant Physiol 88:923–929CrossRefGoogle Scholar
  49. Krom MD, Kress N, Brenner S, Gordon LI (1991) Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol Oceanogr 36:424–432CrossRefGoogle Scholar
  50. Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112CrossRefGoogle Scholar
  51. Kruse O, Nixon PJ, Schmid GH, Mullineaux CW (1999) Isolation of state transition mutants of Chlamydomonas reinhardtii by fluorescence video imaging. Photosynth Res 61:43–51CrossRefGoogle Scholar
  52. Kupper H, Setlik I, Seibert S, Prasil O, Setlikova E, Strittmatter M, Levitan O, Lohscheider J, Adamska I, Berman-Frank I (2008) Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation. New Phytol 179:784–798CrossRefGoogle Scholar
  53. LaRoche J, Geider RJ, Graziano LM, Murray H, Lewis K (1993) Induction of specific proteins in eukaryotic algae grown under iron-, phosphorus-, or nitrogen-deficient conditions. J Phycol 29:767–777CrossRefGoogle Scholar
  54. Lean DRS, Pick FR (1981) Photosynthetic response of lake plankton to nutrient enrichment: a test for nutrient limitation. Limnol Oceanogr 26:1001–1019CrossRefGoogle Scholar
  55. Lewandowska J, Kosakowska A (2004) Effect of iron limitation on cells of the diatom Cylotella meneghiniana Kützing. Oceanol 46:269–287Google Scholar
  56. Lippemeier S, Hartig P, Colijn F (1999) Direct impact of silicate on the photosynthetic performance of the diatom Thalassiosira weissflogii assessed by on- and off-line PAM fluorescence measurements. J Plankton Res 21:269–283CrossRefGoogle Scholar
  57. Lippemeier S, Hintze R, Vanselow KH, Hartig P, Coljin F (2001) In-line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply of photosynthesis. Eur J Phycol 36:89–100CrossRefGoogle Scholar
  58. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the North-East Pacific Subartic. Nature 331:341–343CrossRefGoogle Scholar
  59. Masi A, Melis A (1997) Morphological and molecular changes in the unicellular green alga Dunaliella salina grown under supplemental UV-B radiation: cell characterstics and Photosytem II damage and repair properties. Biochim Biophy Acta 1321:183–193CrossRefGoogle Scholar
  60. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668CrossRefGoogle Scholar
  61. McAndrew PM, Bjorkman KM, Church MJ, Morris PJ, Jachowski N, Williams PJL, Karl DM (2007) Metabolic response of oligotrophic plankton communities to deep water nutrient enrichment. Mar Ecol Prog Ser 332:63–75CrossRefGoogle Scholar
  62. McKay RML, Geider RJ, LaRoche J (1997) Physiological and biochemical response of the photosynthetic apparatus of two marine diatoms to Fe stress. Plant Physiol 114:615–622Google Scholar
  63. Miller WE, Maloney TE, Greene EJC (1974) Algal productivity in 49 lake waters, as determined by algal assays. Water Res 8:667–679CrossRefGoogle Scholar
  64. Miller WE, Greene EJC, Shiroyama T (1978) The Selenastrum capricornutum Printz algal assay: bottle test. Experimental design, application and data interpretation protocol: EPA (USA)Google Scholar
  65. Miller AG, Espie GS, Canvin DT (1991) The effects of inorganic carbon and oxygen on fluorescence in the cyanobacterium Synechococcus UTEX 625. Can J Bot 69:1151–1160CrossRefGoogle Scholar
  66. Moore CM, Mills MM, Languois R, Milne A, Achterberg EP, La Roche J, Geider RJ (2008) Relative influence of nitrogen and phosphorous availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. Limnol Oceanogr 53:291–305CrossRefGoogle Scholar
  67. Morel FMM, Hudson RJM (1985) The geobiological cycle of trace elements in aquatic systems: Redfield revisited. In: Stumm W (ed) Chemical processes in lakes. Wiley, New York, pp 251–281Google Scholar
  68. Morse JW, Zullig JJ, Bernstein LD, Miller FJ, Milne P, Mucci A, Choppin GR (1985) Chemistry of calcium carbonate-rich shallow water sediments in the Bahamas. Am J Sci 285:147–185CrossRefGoogle Scholar
  69. Nixon SW (1995) Coastal marine eutrophication – a definition, social causes, and future concerns. Ophelia 41:199–219Google Scholar
  70. North RL, Guildford SJ, Smith REH, Havens SM, Twiss MR (2007) Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnol Oceanogr 52:315–28CrossRefGoogle Scholar
  71. Owens TG (1986) Light harvesting function in the diatom Phaeodactylum tricornutum. Plant Physiol 80:739–746CrossRefGoogle Scholar
  72. Petrou K, Doblin MA, Smith RA, Ralph PJ, Shelly K, Beardall J (2008) State transitions and nonphotochemical quenching during a nutrient-induced fluorescence transient in phosphorus-starved, Dunaliella tertiolecta. J Phycol 44:1204–1211CrossRefGoogle Scholar
  73. Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149CrossRefGoogle Scholar
  74. Raven JA, Brown K, Mackay M, Beardall J, Giordano M, Granum E, Leegood RG, Kilminster K, Walker DI (2005) Iron, nitrogen, phosphorus and zinc cycling and consequences for primary productivity in the oceans. In: Gadd GM, Semple KT, Lappin-Scott HM (eds) Society for General Microbiology Symposium 65: Micro-organisms and earth systems – advances in geomicrobiology. Cambridge University Press, Cambridge, pp 247–272Google Scholar
  75. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221Google Scholar
  76. Roberts S (1998) Physiological effects of phosphorus limitation on photosynthesis in two green algae Ph.D. thesis, Monash University, Melbourne 116 ppGoogle Scholar
  77. Roberts S, Shelly K, Beardall J (2008) Interactions among phosphate uptake, photosynthesis, and chlorophyll fluorescence in nutrient-limited cultures of the chlorophyte microalga Dunaliella tertiolecta. J Phycol 44:662–669CrossRefGoogle Scholar
  78. Saito MA, Goepfert TJ, Ritt JT (2008) Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. Limnol Oceanogr 53:276–90CrossRefGoogle Scholar
  79. Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262CrossRefGoogle Scholar
  80. Seitzinger SP (1988) Denitrification in fresh-water and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33:702–724CrossRefGoogle Scholar
  81. Shipe RF, Carpenter EJ, Govil SR, Capone DG (2007) Limitation of phytoplankton production by Si and N in the western Atlantic Ocean. Mar Ecol Prog Ser 338:33–45CrossRefGoogle Scholar
  82. Singh BN, Lal KN (1935) Limitations of Blackman’s law of limiting factors and Harder’s concept of relative minimum as applied to photosynthesis. Plant Physiol 10:245–268CrossRefGoogle Scholar
  83. Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems – A global problem. Environ Sci Pollut R 10:126–139CrossRefGoogle Scholar
  84. Sterner RW, Anderson TR, Elser JJ, Hessen DO, Hood JM, McCauley E, Urabe J (2008) Scale-dependent carbon: nitrogen: phosphorus seston stoichiometry in marine and freshwaters. Limnol Oceanogr 53:1169–1180CrossRefGoogle Scholar
  85. Sunda WG, Huntsman SA (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390:389–392CrossRefGoogle Scholar
  86. Sundareshwar PV, Morris JT, Koepfler EK, Fornwalt B (2003) Phosphorus limitation of coastal ecosystem processes. Science 299:563–565CrossRefGoogle Scholar
  87. Timmermans KR, van Leeuwe MA, de Jong JTM, McKay RML, Nolting RF, Witte HJ, van Ooyen J, Swagerman MJW, Kloosterhuis H, de Baar HJW (1998) Iron stress in the Pacific region of the Southern Ocean: evidence from enrichment bioassays. Mar Ecol Prog Ser 166:27–41CrossRefGoogle Scholar
  88. Ting CS, Owens TG (1994) The effects of excess irradiance on photosynthesis in the marine diatom Phaeodactylum tricornutum. Plant Physiol 106:763–770Google Scholar
  89. Titman D, Kilham P (1976) Sinking in freshwater phytoplankton- some ecological implications of cell nutrient status and physical mixing processes. Limnol Oceanogr 21:409–417CrossRefGoogle Scholar
  90. Turpin DH, Weger HG (1988) Steady-state chlorophyll a fluorescence transients during ammonium assimilation by the N-limited green alga Selenastrum minutum. Plant Physiol 88:97–101CrossRefGoogle Scholar
  91. Van Mooy BAS, Devol AH (2008) Assessing nutrient limitation of Prochlorococcus in the North Pacific subtropical gyre by using an RNA capture method. Limnol Oceanogr 53:78–88CrossRefGoogle Scholar
  92. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115CrossRefGoogle Scholar
  93. Weger HG, Middlemiss JK, Petterson CD (2002) Ferric chelate reductase activity as affected by the iron-limited growth rate in four species of unicellular green algae (Chlorophyta). J Phycol 38:513–519Google Scholar
  94. Wood MD, Oliver RL (1995) Fluorescence transients in response to nutrient enrichment of nitrogen- and phosphorus-limited Microcystis aeruginosa cultures and natural phytoplankton populations: a measure of nutrient limitation. Aust J Plant Physiol 22:331–340CrossRefGoogle Scholar
  95. Wynne D, Berman T (1980) Hot water extractable phosphorus – an indicator of nutritional status of Peridinium cinctum (Dinophyceae) from Lake Kinneret (Israel). J Phycol 16:40–46CrossRefGoogle Scholar
  96. Young EB, Beardall J (2003) Rapid ammonium- and nitrate-induced perturbations to chl a fluorescence in nitrogen-stressed Dunaliella tertiolecta (Chlorophyta). J Phycol 39:332–342CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.School of Biological SciencesMonash UniversityClaytonAustralia

Personalised recommendations