Multiple-Point Kinematic Control of a Humanoid Robot

  • Agostino De Santis
  • Giuseppe Di Gironimo
  • Luigi Pelliccia
  • Bruno Siciliano
  • Andrea Tarallo
Conference paper


Robots designed to operate in everyday domains have to move in environments designed for the humans. Therefore, they will often have a humanoid kinematic structure. Simple and efficient kinematic models are needed for motion control of this class of robots. An algorithm is presented to solve the inverse kinematics problem in the presence of a number of control points arbitrarily located on the whole robot body, using an augmented Jacobian approach and including posture control. Simulation experiments are reported, showing the effectiveness of the proposed approach.

Key words

Multiple-point control inverse kinematics humanoid robot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: system overview and integration. In Proceedings 2002 IEEE/RSJ International Conference on Intelligent Robots and System, Lausanne, Switzerland (2002).Google Scholar
  2. 2.
    Kaneko, K., Kanehiro, F., Kajita, S., Yokoyama, K., Akachi, K., Kawasaki, T., Ota, S., Isozumi, T.: Design of prototype humanoid robotics platform for HRP. In Proceedings 2002 IEEE/RSJ International Conference on Intelligent Robots and System, Lausanne, Switzerland (2002).Google Scholar
  3. 3.
    Iwata, H., Sugano, S.: Design of human symbiotic robot TWENDY-ONE. In Proceedings 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan (2009).Google Scholar
  4. 4.
    Siciliano, B., Khatib, O. (Eds.): Springer Handbook of Robotics. Springer, Heidelberg (2008).zbMATHGoogle Scholar
  5. 5.
    Robins, B., Dautenhahn, K., Boekhorst, T., Billard, A.: Robotic assistants in therapy and education of children with autism: Can a small humanoid robot help encourage social interaction skills? Univers. Access Inf. Soc., 4(2), 105–120 (2005).CrossRefGoogle Scholar
  6. 6.
    Di Gironimo, G., Lanzotti, A.: Designing in VR. International Journal on Interactive Design and Manufacturing, 3(2), 51–53 (2009).CrossRefGoogle Scholar
  7. 7.
    Caputo, F., Di Gironimo, G., Marzano, A.: Ergonomic optimization of a manufacturing system work cell in a virtual environment. Acta Polytechnica, 46(5), 21–27 (2006).Google Scholar
  8. 8.
    Caputo, F., Di Gironimo, G., Papa, S.: A Virtual reality system for ergonomics and usability validation of equipment controls. Anales de Ingegneria Gráfica, 18, 47–64 (2006).Google Scholar
  9. 9.
    Di Gironimo, G., Patalano, S.: Re-design of a railway locomotive in virtual environment for ergonomic requirements. International Journal on Interactive Design and Manufacturing, 2(1), 47–57 (2008).CrossRefGoogle Scholar
  10. 10.
    De Santis, A., Pierro, P., Siciliano B.: The virtual end-effectors approach for human-robot interaction. In Proceedings 10th International Symposium on Advances in Robot Kinematics, Ljubljana, Slovenia (2006).Google Scholar
  11. 11.
    De Santis, A., Albu-Schaeffer, A., Ott, C., Siciliano, B., Hirzinger, G.: The skeleton algorithm for self-collision avoidance of a humanoid manipulators. In Proceedings 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Zürich, Switzerland (2007).Google Scholar
  12. 12.
    De Santis, A., Siciliano, B.: Inverse kinematics of robot manipulators with multiple moving control points. In Proceedings 11th International Symposium on Advances in Robot Kinematics, Batz-sur-Mer, France (2008).Google Scholar
  13. 13.
    Yamane, K.: Simulating and Generating Motions of Human Figures. Springer, Heidelberg (2004).zbMATHGoogle Scholar
  14. 14.
    Siciliano, B., Sciavicco, L., Villani, L, Oriolo, G.: Robotics: Modelling, Planning and Control. Springer, London (2009).Google Scholar
  15. 15.
    Nakamura, Y.: Advanced Robotics: Redundancy and Optimization. Addison-Wesley, Reading, MA (1991).Google Scholar
  16. 16.
    Siciliano, B., Slotine, J.J. E.: A general framework for managing multiple tasks in highly redundant robotic systems. In Proceedings 5th International Conference on Advanced Robotics, Pisa, Italy (1991).Google Scholar
  17. 17.
    Magnenat-Thalmann, N., Thalmann, D.: Modelling and Motion Capture Techniques for Virtual Environments. Springer Verlag (1998).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Agostino De Santis
    • 1
  • Giuseppe Di Gironimo
    • 2
  • Luigi Pelliccia
    • 2
  • Bruno Siciliano
    • 1
  • Andrea Tarallo
    • 2
  1. 1.Dipartimento di Informatica e SistemisticaPRISMA LabRomeItaly
  2. 2.VRTEST Lab, Dipartimento di Meccanica ed EnergeticaUniversità degli Studi di Napoli Federico IINapoliItaly

Personalised recommendations