Advertisement

Ab Initio Quantum Chemistry and Semi-Empirical Description of Solid State Phases Under High Pressure: Chemical Applications

  • Piero MacchiEmail author
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

There is nowadays a consensus that the structures of crystals at high pressure provide useful chemical information, at least in three important fields: (a) discoveries of new polymorphs and mechanisms of solid-solid transitions or high-pressure crystallizations; (b) intra- and inter-molecular bonding as a function of the external stress; (c) structure-property correlation. While experimental evidence is vital at high pressure, there is an increasing need of support from theoretical work, in particular for predicting new phases and their structure, for explaining the mechanisms of phase transformations and for computing and predicting the material properties. In this chapter, a brief survey of quantum mechanical descriptions of the solid state is given, summarizing the state of the art in the field and the potential developments. Some examples will illustrate the successful synergy between theory and experiment in studies on molecular crystals at high pressure.

Keywords

Ab initio calculations quantum chemistry semi-empirical modeling high pressure 

Notes

Acknowledgments

The author thanks the Swiss National Science Foundation for financial support (project 200021_126788).

References

  1. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., and Luitz, J., 2001, WIEN2K, An Augmented Plane Wave + Local Orbitals Program For Calculating Crystal Properties, ed. K. Schwarz. Techn. Universitat, Wien, Austria ISBN 3-9501031-1-2.Google Scholar
  2. Boldyreva, E.V., 2004, High-pressure studies of the hydrogen bond networks in molecular crystals, J. Mol. Struct. 700: 151–155.ADSCrossRefGoogle Scholar
  3. Boldyreva, E.V., 2008, High-pressure diffraction studies of molecular organic solids. A personal view, Acta Cryst. A. 64: 218–231.CrossRefGoogle Scholar
  4. Boldyreva, E.V., Ahsbahs, H., Chernyshev, V.V., Ivashevskaya S.N., and Oganov, A.R., 2006a, Effect of hydrostatic pressure on the crystal structure of sodium oxalate: X-ray diffraction study and ab initio simulations, Z. Kristallogr. 221: 186–197.CrossRefGoogle Scholar
  5. Boldyreva, E.V., Dmitriev, V.P., and Hancock, B.C., 2006b, Effect of pressure up to 5.5 GPa on dry powder samples of chlorpropamide form-A, Int. J. Pharm. 327: 51–57.CrossRefGoogle Scholar
  6. Boldyreva, E.V., Shakhtshneider, T.P., Vasilchenko, M.A., Ahsbahs, H., and Uchtmann H., 2000, Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressure, Acta Cryst. B. 56: 299–309.CrossRefGoogle Scholar
  7. Boldyreva, E.V., 2007a, Crystalline amino acids – a link between chemistry, materials science and biology, In: Models, Mysteries, and Magic of Molecules, Eds. Boeyens, J.C.A., Ogilvie, J.F., Springer Verlag, New York, pp.169–194.Google Scholar
  8. Boldyreva, E.V., 2007b, High-pressure polymorphs of molecular solids: when are they formed, and when are they not? Some examples of the role of kinetic control, Crystal Growth Des. 7(9): 1662–1668.CrossRefGoogle Scholar
  9. Boldyreva, E.V., 2007c, High-pressure studies of crystalline amino acids and simple peptides / Proceedings of the IV-th International Conference on High Pressures in Biosciences and Biotechnology, Presented by J-STAGE, Tsukuba, Japan, September, 25th–26th, 2006, Eds. Abe F., Suzuki, A., Japan Science and Technology Agency, Saitama, Japan, 1(1), pp. 28–46.Google Scholar
  10. Boldyreva, E.V., 2009, Combined X-ray diffraction and Raman spectroscopy studies of phase transitions in crystalline amino acids at low temperatures and high pressures. Selected examples, Phase Transitions, 82 (4): 303–321.MathSciNetCrossRefGoogle Scholar
  11. Bridgman, P.W., 1931, The Physics of High Pressure, Bell and Sons., London.Google Scholar
  12. Casati, N., Macchi, P., and Sironi, A., 2005, Staggered to eclipsed conformational rearrangement of [Co2(CO)6(PPh3)2] in the solid state: an X-ray diffraction study at high pressure and low temperature, Angew. Chem. Int. Ed. 44: 7736–7739.CrossRefGoogle Scholar
  13. Casati, N., Macchi, P., and Sironi, A., 2009a, Molecular crystals under high pressure: theoretical and experimental investigations of the solid–solid phase transitions in [Co2(CO)6(XPh3)2] (X=P, As), Chemistry, Eur. J. 15: 4446–4457.CrossRefGoogle Scholar
  14. Casati, N., Macchi, P., and Sironi, A., 2009b, Hydrogen migration in oxalic acid di-hydrate at high pressure?, Chem. Commun. 21: 2679–2681.CrossRefGoogle Scholar
  15. Casati, N., Macchi, P., Marshall, W., Sironi, A. submitted for pubblication.Google Scholar
  16. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and Payne, M.C., 2005, First principles methods using CASTEP, Z. Kristall. 220: 567–570.CrossRefGoogle Scholar
  17. Crawford, S., Kirchner, M.T., Blaser, D., Boese, R., David, W.I.F., Dawson, A., Gehrke, A., Ibberson, R.M., Marshall, W.G., Parsons, S., Yamamuro, O., 2009, Isotopic Polymorphism in Pyridine, Angew. Chem. Int. Ed. 48: 755–757.CrossRefGoogle Scholar
  18. Dovesi, R., Saunders, V.R., Roetti, C., Orlando, R., Zicovich-Wilson, C.M., Pascale, F., Civalleri, B., Doll, K., Harrison, N.M., Bush, I.J., D’Arco, Ph., and Llunell, M., 2006, CRYSTAL06 User’s Manual, University of Torino, Torino.Google Scholar
  19. Boldyreva, E.V., Shakhtshneider, T.P., Ahsbahs, H., Sowa, H., and Uchtmann, H., 2002, Effect of high pressure on the polymorphs of paracetamol, J. Therm Anal. Calorim. 66: 437–452.Google Scholar
  20. Eremets, M.I., Gavriliuk, A.G., Trojan, I.A., Dzivenko, D.A., and Boehler, R., 2004, Single-bonded cubic form of nitrogen, Nature Mater.. 3: 558–563.ADSCrossRefGoogle Scholar
  21. Gale, J., 2005, GULP: Capabilities and prospects, Z. Kristallogr. 220: 552–554.CrossRefGoogle Scholar
  22. Gavezzotti, A., 2002, Calculation of intermolecular interaction energies by direct numerical integration over electron densities. I. Electrostatic and polarization energies in molecular crystals, J. Phys. Chem. B. 106: 4145–4154.CrossRefGoogle Scholar
  23. Grimme, S., 2004, Accurate description of van der Waals complexes by density functional theory including empirical corrections, J Comput Chem. 25: 1463.CrossRefGoogle Scholar
  24. Hohenberg, P. and Kohn, W., 1964, Inhomogeneous electron gas, Phys. Rev. 136: B864.MathSciNetADSCrossRefGoogle Scholar
  25. Ibberson, R.M., Parsons, S., Allan, D.R., and Bell, A.M., 2008, Polymorphism in cyclohexanol, Acta Cryst. B64: 573–582.Google Scholar
  26. Jensen, F., 2006, Introduction to Computational Chemistry, Wiley-VCH, Weinheim, Germany.Google Scholar
  27. Johnstone, R.D.L., Francis, D., Lennie, A.R., Marshall, W.G., Moggach, S.A., Parsons, S., Pidcock, E., and Warren, J.E., 2008, High-pressure polymorphism in L-serine monohydrate: identification of driving forces in high pressure phase transitions and possible implications for pressure-induced protein denaturation, CrystEngComm. 10: 1758–1769.CrossRefGoogle Scholar
  28. Katrusiak, A., 1990, High-pressure X-ray-diffraction study on the structure and phase-transition of 1,3-cyclohexanedione crystals, Acta Cryst. B 46: 246–256.CrossRefGoogle Scholar
  29. Katrusiak, A., 2008, High-pressure crystallography, Acta Cryst. A 64: 135–148.CrossRefGoogle Scholar
  30. Kresse, G. and Furthmuller, J., 1996, Efficiency of ab initio total-energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6: 15–50.CrossRefGoogle Scholar
  31. Nunzi, F., Fantacci, S., DeAngelis, F., Sgamellotti, A., Cariati, E., Ugo, R., and Macchi, P., 2008, Theoretical investigations of the effects of J-aggregation on the linear and nonlinear optical properties of E-4-(4-Dimethylaminostyryl)-1-methylpyridinium [DAMS+], J. Phys. Chem. C. 112: 1213–1226.CrossRefGoogle Scholar
  32. Oganov, A.R., Chen, J., Gatti, C., Ma, Y., Ma, Y., Glass, C.W., Liu, Z., Yu, T., Kurakevych, O.O., and Solozhenko, V.L., 2009, Ionic high-pressure form of elemental boron, Nature 457: 863–868.ADSCrossRefGoogle Scholar
  33. Oganov, A.R., Solozhenko, V.L., Kurakevych, O.O., Gatti, C., Ma, Y., Chen, J., Liu, Z., Hemley, R.J., (2009b), arXiv: 0908.2126v2Google Scholar
  34. Olejniczak, A., Katrusiak, A., and Vij, A., 2008, High-pressure freezing, crystal structure studies and Si-CF3 bond polarizability of trimethyl(trifluoromethyl)silane J. Flor. Chem. 129: 1090–1095.CrossRefGoogle Scholar
  35. Vereschagin, L.F., and Kabalkina, S.S., 1979, X-ray diffraction studies at high pressures, Nakuka, Moscow. Google Scholar
  36. Volkov, A., Koritsanszky, T., and Coppens, P., 2004, Combination of the exact potential and multipole methods (EP/MM) for evaluation of intermolecular electrostatic interaction energies with pseudoatom representation of molecular electron densities, Chem. Phys. Lett. 391: 170–175.ADSCrossRefGoogle Scholar
  37. Zarechnaya, E.Yu., Dubrovinsky, L., Dubrovinskaia, N., Filinchuk, Y., Chernyshev, D., Dmitriev, V., Miyajima, N., El Goresy, A., Braun, H.F., Van Smaalen, S., Kantor, I., Kantor, A., Prakapenka, V., Hanfland, M., Mikhaylushkin, A.S., Abrikosov, I.A., and Simak, S.I., 2009, Superhard semiconducting optically transparent high pressure phase of Boron Phys. Rev. Lett. 102: 185501-4.ADSCrossRefGoogle Scholar
  38. Zyss, J. and Chemla, D.S. (eds) 1987, Nonlinear Optical Properties of Organic Molecules and Crystals, Academic, Orlando, 1: pp. 23–187.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Laboratory of Chemical Crystallography, Department of Chemistry and BiochemistryUniversity of BernBernSwitzerland

Personalised recommendations