Advertisement

Radial Diffraction in the Diamond Anvil Cell: Methods and Applications

  • Sebastien Merkel
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Radial diffraction in the diamond anvil cell is a relevant technique for the study of plastic behavior of materials under high pressure. In this geometry, incident x-rays are perpendicular to the compression direction and we study the distortion of the diffraction rings, as well as variations of diffraction intensities with orientation. Plastic deformation induces local stress heterogeneities that are not properly accounted for in theories relying on elasticity only. Here, I show how those experiments coupled to numerical plasticity models can be used to extract important information, such as the identification of microscopic deformation mechanisms, a measure of the average stress supported by the sample, and a quantification of local stresses.

Keyword

Radial diffraction texture plasticity stress lattice preferred orientations 

References

  1. Antonangeli, D., M. Krisch, G. Fiquet, D. L. Farber, C. M. Aracne, J. Badro, F. Occelli, and H. Requardt, 2004, Elasticity of Cobalt at High pressure studied by inelastic x-ray scattering, Phys. Rev. Lett. 93, 215505ADSCrossRefGoogle Scholar
  2. Antonangeli, D., S. Merkel, and D. L. Farber, 2006, Elastic anisotropy in hcp metals at high pressure and the sound wave anisotropy of the Earth’s inner core, Geophys. Res. Lett. 33, L24303ADSCrossRefGoogle Scholar
  3. Burnley, P. C., and D. Zhang, 2008, Interpreting in situ x-ray diffraction data from high pressure deformation experiments using elastic-plastic self-consistent models: an example using quartz, J. Phys. : Condens. Matter 20, 285201CrossRefGoogle Scholar
  4. Duffy, T. S., G. Shen, D. L. Heinz, J. Shu, Y. Ma, H. K. Mao, R. J. Hemley, and A. K. Singh 1999, Lattice strains in gold and rhenium under non-hydrostatic compression to 37 GPa, Phys. Rev. B 60, 15063–15073ADSCrossRefGoogle Scholar
  5. Hemley, R. J., H. K. Mao, G. Shen, J. Badro, P. Gillet, M. Hanfland, and D. Häusermann, 1997, X-Ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures, Science 276, 1242–1245CrossRefGoogle Scholar
  6. Kavner, A., 2007, Garnet yield strength at high pressures and implications for upper mantle and transition zone rheology, J. Geophys. Res. 112, B12207ADSCrossRefGoogle Scholar
  7. Kinsland, G. L., and W. A. Bassett, 1976, Modification of the diamond anvil cell for the measuring strain and the strength of materials at pressures up to 300 kilobar, Rev. Sci. Instrum. 47, 130–132ADSCrossRefGoogle Scholar
  8. Kocks, U. F., C. Tomé, and H. R. Wenk, 1998, Texture and Anisotropy: Preferred Orientations and their Effects on Material Properties, Cambridge University Press, CambridgeGoogle Scholar
  9. Lebensohn, R. A., and C. N. Tomé, 1994, A self-consistent visco-plastic model: calculation of rolling textures of anisotropic materials, Mater. Sci. Eng. A 175, 71–82CrossRefGoogle Scholar
  10. Li, L., D. J. Weidner, J. Chen, M. T. Vaughan, M. Davis, and W. B. Durham (2004), X-ray strain analysis at high pressure: Effect of plastic deformation in MgO, J. Appl. Phys. 95, 8357–8365ADSCrossRefGoogle Scholar
  11. Lutterotti, L., S. Matthies, and H. R. Wenk, 1999, MAUD: a friendly Java program for materials analysis using diffraction, IUCr: Newslett. CPD 21, 14–15Google Scholar
  12. Mao, H. K., J. Shu, Y. Fei, J. Hu, and R. J. Hemley, 1996, The wüstite enigma, Phys. Earth Planet. Int. 96, 135–145ADSCrossRefGoogle Scholar
  13. Mao, H. K., J. Shu, G. Shen, R. J. Hemley, B. Li, and A. K. Singh, 1998, Elasticity and rheology of iron above 220 GPa and the nature of the Earth’s inner core, Nature 396, 741–743ADSCrossRefGoogle Scholar
  14. Mao, W. L., V. V. Struzhkin, A. Q. R. Baron, S. Tsutsui, C. E. Tommaseo, H.-R. Wenk, M. Y. Hu, P. Chow, W. Sturhahn, J. Shu, R. J. Hemley, D. L. Heinz, and H. K. Mao, 2008, Experimental determination of the elasticity of iron at high pressure, J. Geophys. Res. 113, B09213ADSCrossRefGoogle Scholar
  15. Matthies, S., H. G. Priesmeyer, and M. R. Daymond, 2001, On the diffractive determination of single-crystal elastic constants using polycrystalline samples, J. Appl. Cryst. 34, 585–601CrossRefGoogle Scholar
  16. Merkel, S., H. R. Wenk, J. Shu, G. Shen, P. Gillet, H. K. Mao, and R. J. Hemley, 2002, Deformation of polycrystalline MgO at pressures of the lower mantle, J. Geophys. Res. 107, 2271ADSCrossRefGoogle Scholar
  17. Merkel, S., and T. Yagi, 2005, X-ray transparent gasket for diamond anvil cell high pressure experiments, Rev. Sci. Instrum. 76, 046109ADSCrossRefGoogle Scholar
  18. Merkel, S., J. Shu, P. Gillet, H. Mao, and R. Hemley, 2005, X-ray diffraction study of the single crystal elastic moduli of ε-Fe up to 30 GPa, J. Geophys. Res. 110, B05201ADSCrossRefGoogle Scholar
  19. Merkel, S., 2006, X-ray diffraction evaluation of stress in high pressure deformation experiments, J. Phys: Condens. Matter 18, S949–S962ADSCrossRefGoogle Scholar
  20. Merkel, S., A. Kubo, L. Miyagi, S. Speziale, T. S. Duffy, H.-K. Mao, and H.-R. Wenk, 2006a, Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures, Science 311, 644–646ADSCrossRefGoogle Scholar
  21. Merkel, S., N. Miyajima, D. Antonangeli, G. Fiquet, and T. Yagi, 2006, Lattice preferred orientation and stress in polycrystalline hcp-Co plastically deformed under high pressure, J. Appl. Phys. 100, 023510ADSCrossRefGoogle Scholar
  22. Merkel, S., C. Tomé, and H.-R. Wenk, 2009, A modeling analysis of the influence of plasticity on high pressure deformation of hcp-Co, Phys. Rev. B 79, 064110ADSCrossRefGoogle Scholar
  23. Miyagi, L., S. Merkel, T. Yagi, N. Sata, Y. Ohishi, and H. R. Wenk, 2006, Quantitative Rietveld texture analysis of CaSiO3 perovskite deformed in a diamond anvil cell, J. Phys.: Condens. Matter 18, S995–S1005ADSCrossRefGoogle Scholar
  24. Singh, A. K., C. Balasingh, H. K. Mao, R. J. Hemley, and J. Shu, 1998, Analysis of lattice strains measured under non-hydrostatic pressure, J. Appl. Phys. 83, 7567–7575ADSCrossRefGoogle Scholar
  25. Speziale, S., I. Lonardelli, L. Miyagi, J. Pehl, C. E. Tommaseo, and H. R. Wenk, 2006, Deformation experiments in the diamond-anvil cell: texture in copper to 30 GPa, J. Phys.: Condens. Matter 18, S1007–S1020ADSCrossRefGoogle Scholar
  26. Weidner, D. J., L. Li, M. Davis, and J. Chen, 2004, Effect of plasticity on elastic modulus measurements, Geophys. Res. Lett. 31, L06621ADSCrossRefGoogle Scholar
  27. Weinberger, M. B., S. H. Tolbert, and A. Kavner, 2008, Osmium metal studied under high pressure and nonhydrostatic Stress, Phys. Rev. Lett. 100, 045506ADSCrossRefGoogle Scholar
  28. Wenk, H. R., S. Matthies, J. Donovan, and D. Chateigner, 1998, BEARTEX : a Windows-based program system for quantitative texture analysis, J. Appl. Cryst. 31, 262–269CrossRefGoogle Scholar
  29. Wenk, H. R., S. Matthies, R. J. Hemley, H. K. Mao, and J. Shu, 2000, The plastic deformation of iron at pressures of the Earth’s inner core, Nature 405, 1044–1047ADSCrossRefGoogle Scholar
  30. Wenk, H. R., I. Lonardelli, S. Merkel, L. Miyagi, J. Pehl, S. Speziale, and C. E. Tommaseo, 2006, Deformation textures produced in diamond anvil experiments, analyzed in radial diffraction geometry, J. Phys: Condens. Matter 18, S933–S947ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Laboratoire de Unité Matériaux et TransformationsUniversité Lille 1, CNRSVilleneuve d’AscqFrance

Personalised recommendations