Conceptual Profiles: Theoretical-Methodological Bases of a Research Program

  • Eduardo F. Mortimer
  • Phil Scott
  • Edenia Maria Ribeiro do Amaral
  • Charbel N. El-Hani
Chapter
Part of the Contemporary Trends and Issues in Science Education book series (CTISE, volume 42)

Abstract

Conceptual profiles are models of the heterogeneity of thought and language in the classroom, embedded into a theoretical structure that addresses school science social language learning from a sociocultural perspective. They are related to an understanding of concepts that denies its interpretation as entirely internal mental structures and conceives concepts as parts of natural languages or knowledge structures, entities or linguistic structures external to the mind that do not become entirely internalized. Conceptual thinking is conceived as an emergent process, always produced through interaction between individuals and external experiences. Since the theory takes as a basis Vygotsky’s general genetic law of cultural development, according to which individual thinking develops through the internalization of cultural tools available in social interactions, when we deny that there can be concept internalization, a potential contradiction appears, which is discussed and solved in this paper based on Vygotsky’s theory and on situated cognition. We also elaborate on the characteristics of conceptual profiles as models of the different ways of seeing and conceptualizing the world present in a given sociocultural circumstance, discuss the nature of learning according to the conceptual profile theory, and examine an example of such model, built to deal with the semantic dimension of teaching and learning about heat and temperature.

References

  1. Abrantes, P. (1999). Simulação e realidade [Simulation and reality]. Revista Colombiana de Filosofía de La Ciencia, 1, 9–40.Google Scholar
  2. Albert, E. (1978). Development of concept of heat in children. Science Education, 62, 389–399. doi:10.1002/sce.3730620316.CrossRefGoogle Scholar
  3. Amaral, E. M. R., & Mortimer, E. F. (2001). Uma proposta de perfil conceitual para o conceito de calor [A proposal of a conceptual profile of heat]. Revista Brasileira de Pesquisa em Educação em Ciências, 1, 5–18.Google Scholar
  4. Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial Intelligence, 149, 91–130. doi:10.1016/S0004-3702(03)00054-7.CrossRefGoogle Scholar
  5. Bachelard, G. (1938/1996). A formação do espírito científico [The formation of scientific mind] (Estela dos Santos Abreu, Trans.). Rio de Janeiro: Contraponto Editora.Google Scholar
  6. Bachelard, G. (1940). La Philosophie du Non [The philosophy of No]. Paris: PUF.Google Scholar
  7. Bakhtin, M. M. (1981). The dialogic imagination: Four essays by M. M. Bakhtin (M. Holquist, Ed., C. Emerson and M. Holquist, Trans.). Austin, TX: University of Texas Press.Google Scholar
  8. Bakhtin, M. M. (1986). Speech genres & other late essays (C. Emerson & M. Holquist, Eds., V. W. McGee, Trans.). Austin, TX: University of Texas Press.Google Scholar
  9. Barbosa Lima, M. C., & de Barros, H. L. (1997).Uma proposta de ensino de calor e temperatura à luz de Bachelard [A proposal for teaching heat and temperature in the light of Bachelard]. In Atas do I Encontro Nacional de Pesquisa em Ensino de Ciências (pp. 315–321). Porto Alegre: ABRAPEC.Google Scholar
  10. Berger, P. L., & Luckmann, T. (1967). The social construction of reality: A treatise in the sociology of knowledge. London: Allen Lane.Google Scholar
  11. Black, M. (1962). Models and metaphors. Ithaca, NY: Cornell University Press.Google Scholar
  12. Boo, H. K. (1998). Students’ understandings of chemical bonds and the energetics of chemical reactions. Journal of Research in Science Teaching, 35, 569–581. doi:10.1002/(SICI)1098-2736(199805)35:5<569::AID-TEA6>3.0.CO;2-N.CrossRefGoogle Scholar
  13. Brook, A., Briggs, H., Bell, B., & Driver, R. (1984). Aspects of secondary students’ understanding of heat: Summary report (Projeto CLIS – Children’s Learning in Science project). Leeds: The University of Leeds.Google Scholar
  14. Brooks, R. (1991). Intelligence without representation. Artificial Intelligence, 47, 139–159. doi:10.1016/0004-3702(91)90053-M.CrossRefGoogle Scholar
  15. Cervantes, A. (1987). Los conceptos de calor y temperatura: Una revision bibliografica [The concepts of heat and temperature: A literature review]. Enseñanza de las Ciencias, 5, 66–70.Google Scholar
  16. Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. N. Giere (Ed.), Cognitive models of science (Minnesota studies in the philosophy of science, Vol. XV). Minneapolis, MN: University of Minnesota Press.Google Scholar
  17. Clark, A. (1997). Being there: Putting brain body and world together again. Cambridge, MA: MIT Press.Google Scholar
  18. Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58, 07–19. doi:10.1093/analys/58.1.7.CrossRefGoogle Scholar
  19. Cobern, W. W. (1996). Worldview theory and conceptual change in science education. Science Education, 80, 579–610. doi:10.1002/(SICI)1098-237X(199609)80:5<579::AID-SCE5>3.0.CO;2-8.CrossRefGoogle Scholar
  20. Cohen, I., & Ben-Zvi, R. (1992). Improving student achievement in the topic of chemical energy by implementing new learning materials and strategies. International Journal of Science Education, 14, 147–156. doi:10.1080/0950069920140203.CrossRefGoogle Scholar
  21. Crombie, A. C. (1985). Historia de la Ciencia: De San Agustin a Galileu [History of science: From St Augustine to Galileo) (2 Vols., J. Bernia, Trans.). Madrid: Alianza Editorial.Google Scholar
  22. Dennett, D. (1978). Brainstorms. Cambridge, MA: MIT Press.Google Scholar
  23. Duit, R. (1984). Learning the energy concept in school – Empirical results from the Philippines and West Germany. Physics Education, 19, 59–66. doi:10.1088/0031-9120/19/2/306.CrossRefGoogle Scholar
  24. Durkheim, E. ([1895]1972). Selected writings. Cambridge: Cambridge University Press.Google Scholar
  25. Dutra, L. H. (2009). Introdução à Teoria da Ciência [Introduction to theory of science] (3rd ed.). Florianópolis: UFSC.Google Scholar
  26. El-Hani, C. N., & Bizzo, N. (2002). Formas de construtivismo: Mudança conceitual e Construtivismo Contextual [Forms of constructivism: Conceptual change and contextual constructivism]. Ensaio: Pesquisa em Educação Científica, 4, 1–25.Google Scholar
  27. El-Hani, C. N., & Mortimer, E. F. (2007). Multicultural education, pragmatism, and the goals of science teaching. Cultural Studies of Science Education, 2, 657–702. doi:10.1007/s11422-007-9064-y.CrossRefGoogle Scholar
  28. Erickson, G. L. (1985). Heat and temperature – Part A: An overview of pupils’ ideas. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s ideas in science (pp. 55–66). Milton Keynes: Open University Press.Google Scholar
  29. Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  30. Gilbert, J., & Boulter, C. (1998). Learning science through models and modelling. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 53–66). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  31. Gilbert, J., & Pope, M. (1986). Small group discussions about conceptions in science: A case study. Research in Science and Technological Education, 4, 61–76. doi:10.1080/0263514860040107.CrossRefGoogle Scholar
  32. Guaydier, P. (1984). História da física [History of physics] (A. M. Gonçalves, Trans.). Lisboa: Edições 70.Google Scholar
  33. Holquist, M. (1981). Glossary. In M. Holquist (Ed.), The dialogic imagination: Four essays by M. M. Bakhtin (pp. 423–434). Austin, TX: University of Texas Press.Google Scholar
  34. Hudson, J. (1992). The history of chemistry. London: The Macmillan Press.CrossRefGoogle Scholar
  35. Kozulin, A. (1990). Vygotsky’s psychology: A biography of ideas. New York, NY: Harvester Wheatsheaf.Google Scholar
  36. Laidler, K. J. (1993). The world of physical chemistry. New York, NY: Oxford University Press.Google Scholar
  37. Laurence, S., & Margolis, E. (1999). Concepts and cognitive science. In E. Margolis & S. Laurence (Eds.), Concepts: Core readings (pp. 3–81). Cambridge, MA: MIT Press.Google Scholar
  38. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  39. Leont’ev, A. N. (1981). The problem of activity in psychology. In J. V. Wertsch (Ed.), The concept of activity in Soviet psychology (pp. 37–71). Armonk, NY: Sharpe.Google Scholar
  40. Margolis, E., & Laurence, S. (2008). Concepts. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2008 ed.). Retrieved September 18, 2010, from http://plato.stanford.edu/archives/fall2008/entries/concepts/
  41. Martins, I. (2006). Dados como diálogo – Construindo dados a partir de registros de observação de interações discursivas em salas de aula de ciências [Data as dialogue: Constructing data from registers of discursive interaction in science classroom]. In F. M. T. dos Santos & M. Greca (Eds.), A pesquisa em ensino de ciências no Brasil e suas metodologias (pp. 297–321). Ijuí: Editora Unijuí.Google Scholar
  42. Morrill, W. (1975). Cognitive systems and cultural adaptability. The Journal of General Education, XXVII(2), 137–148.Google Scholar
  43. Mortimer, E. F. (1994). Evolução do atomismo em sala de aula: Mudança de perfis conceituais. [Evolution of atomism in classroom: Conceptual profiles change]. Doctoral dissertation, School of Education, University of São Paulo, São Paulo.Google Scholar
  44. Mortimer, E. F. (1995). Conceptual change or conceptual profile change? Science & Education, 4, 265–287. doi:10.1007/BF00486624.CrossRefGoogle Scholar
  45. Mortimer, E. F. (1996). Construtivismo, mudança conceitual e o ensino de ciências: Para onde vamos? [Constructivism, conceptual change and teaching of science: Where do we go?]. Investigações em ensino de ciências, 1, 20–39.Google Scholar
  46. Mortimer, E. F. (2000). Linguagem e formação de conceitos no ensino de ciências. [Language and concept formation in science education]. Belo Horizonte: Editora UFMG.Google Scholar
  47. Mortimer, E. F. (2001). Perfil conceptual: Formas de pensar y hablar em las classes de ciencias [Conceptual profile: Modes of thinking and ways of speaking in science classrooms]. Infancia y Aprendizaje, 24, 475–490. doi:10.1174/021037001317117402.CrossRefGoogle Scholar
  48. Mortimer, E. F., & Amaral, L. O. F. (1998). Quanto mais quente melhor: Calor e temperatura no ensino de termoquímica [Some like it hot: heat and temperature in the teaching of thermochemistry]. Química Nova na Escola, 7, 34–37.Google Scholar
  49. Mortimer, E. F., & Scott, P. (2003). Meaning making in secondary science classrooms. Maidenhead: Open University Press.Google Scholar
  50. Mortimer, E. F., Scott, P., Amaral, E. M. R., & El-Hani, C. N. (2010). Modeling modes of thinking and speaking with conceptual profiles. In S. D. J. Pena (Ed.), Themes in transdisciplinary research (pp. 105–137). Belo Horizonte: Editora UFMG.Google Scholar
  51. Mortimer, E. F., Scott, P., & El-Hani, C. N. (2012). The heterogeneity of discourse in science classrooms: The conceptual profile approach. In B. Fraser, K. Tobin, & C. McRobbie (Eds.), Second international handbook of science education (Vol. 1, pp. 231–246). Dordrecht: Springer.CrossRefGoogle Scholar
  52. Noë, A. (2010). Out of our heads: Why you are not your brain, and other lessons from the biology of consciousness. New York, NY: Hill and Wang.Google Scholar
  53. Novak, J. D., & Cañas, A. J. (2008). The theory underlying concept maps and how to construct and use them (Technical Report IHMC CmapTools 2006-01 Rev 01-2008). Pensacola, FL: Institute for Human and Machine Cognition. Retrieved March 31, 2013, from http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf
  54. O’Regan, J. K. (1992). Solving the “real” mysteries of visual perception: The world as an outside memory. Canadian Journal of Psychology, 46, 461–488.CrossRefGoogle Scholar
  55. Ogborn, J. (1990). Energy, change, difference and danger. School Science Review, 72, 81–85.Google Scholar
  56. Ogborn, J., Kress, G., Martins, I., & McGillicuddy, K. (1996). Explaining science in the classroom. Buckingham: Open University Press.Google Scholar
  57. Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63, 167–199. doi:10.3102/00346543063002167.CrossRefGoogle Scholar
  58. Posner, G. J., Strike, K. A., Hewson, P. W., & Gerzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211–227. doi:10.1002/sce.3730660207.CrossRefGoogle Scholar
  59. Robbins, P., & Aydede, M. (Eds.). (2009a). The Cambridge handbook of situated cognition. Cambridge: Cambridge University Press.Google Scholar
  60. Robbins, P., & Aydede, M. (2009b). A short primer on situated cognition. In P. Robbins & M. Aydede (Eds.), The Cambridge handbook of situated cognition (pp. 3–10). Cambridge: Cambridge University Press.Google Scholar
  61. Rommetveit, R. (1979). On the architecture of intersubjectivity. In R. Rommetveit & R. M. Blakar (Eds.), Studies of language, thought, and verbal communication (pp. 93–108). London: Academic Press.Google Scholar
  62. Sapir, E. (1929). The status of linguistics as a science. Language, 5, 207–214.CrossRefGoogle Scholar
  63. Schurmann, P. F. (1946). Luz y calor [Light and color]. Buenos Aires: Espasa-Calpe.Google Scholar
  64. Schutz, A. ([1932]1967). The phenomenology of the social world (G. Walsh & F. F. Lehnert, Trans.). New York, NY: Northwestern University Press.Google Scholar
  65. Silva, D. (1995). Estudo das trajetórias cognitivas de alunos no ensino da diferenciação dos conceitos de calor e temperatura. [Studying the cognitive trajectory of students in differentiating the concepts of heat and temperature]. Doctoral thesis, School of Education, University of São Paulo, São Paulo; Doctoral dissertation, Faculdade de Educação, USP, São Paulo.Google Scholar
  66. Smith, M. U., & Siegel, H. (2004). Knowing, believing, and understanding: What goals for science education? Science & Education, 13, 553–582. doi:10.1023/B:SCED.0000042848.14208.bf.CrossRefGoogle Scholar
  67. Treagust, D. F., & Duit, R. (2008). Conceptual change: A discussion of theoretical, methodological and practical challenges for science education. Cultural Studies of Science Education, 3, 297–328. doi:10.1007/s11422-008-9090-4.CrossRefGoogle Scholar
  68. Tulviste, P. (1991). The cultural-historical development of verbal thinking (M. J. C. Hall, Trans.). New York, NY: Nova Science.Google Scholar
  69. Van Fraassen, B. (1980). The scientific image. Oxford: Clarendon.CrossRefGoogle Scholar
  70. Vidal, B. (1986). História da química [History of chemistry]. Lisboa: Edições 70.Google Scholar
  71. Vigotski, L. S. (1934/2001). A construção do pensamento e da linguagem [The construction of thought and language] (P. Bezerra, Trans.). São Paulo: Martins Fontes.Google Scholar
  72. Voloshinov, V. N. ([1929]1973). Marxism and the philosophy of language. Cambridge, MA: Harvard University Press.Google Scholar
  73. Vosniadou, S. (Ed.). (2008a). International handbook of research on conceptual change. New York, NY: Routledge.Google Scholar
  74. Vosniadou, S. (2008b). Bridging culture with cognition: A commentary on “culturing conceptions:From first principles”. Cultural Studies of Science Education, 3, 277–282. doi:10.1007/s11422-008-9098-9.CrossRefGoogle Scholar
  75. Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the problem of conceptual change. In S. Vosniadou (Ed.), International handbook of conceptual change (pp. 3–34). New York, NY: Routledge.Google Scholar
  76. Vygotsky, L. S. ([1931]1981). The genesis of higher mental functions. In J. V. Wertsch (Ed.), The concept of activity in Soviet psychology (pp. 144–188). Armonk, NY: Sharpe.Google Scholar
  77. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological process. Cambridge, MA: Harvard University Press.Google Scholar
  78. Wells, G. (2008). Learning to use scientific concepts. Cultural Studies of Science Education, 3, 329–350. doi:10.1007/s11422-008-9100-6.CrossRefGoogle Scholar
  79. Wertsch, J. V. (1985). Vygotsky and the social formation of mind. Cambridge, MA: Harvard University Press.Google Scholar
  80. Wertsch, J. V. (1991). Voices of the mind: A sociocultural approach to mediated action. Cambridge, MA: Harvard University Press.Google Scholar
  81. Wertsch, J., & Stone, C. A. (1985). The concept of internalization in Vygotsky’s account of the genesis of higher mental functions. In J. Wertsch (Ed.), Culture, communication and cognition: Vygotskian perspectives (pp. 162–179). Cambridge: Cambridge University Press.Google Scholar
  82. Whorf, B. L. (1940). Science and linguistics. Technology Review, 42(229–231), 247–248.Google Scholar
  83. Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9, 625–636.CrossRefGoogle Scholar
  84. Zalta, E. N. (2001). Fregean senses, modes of presentation, and concepts. Philosophical Perspective, 15(Noûs Suppl), 335–359.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Eduardo F. Mortimer
    • 1
  • Phil Scott
  • Edenia Maria Ribeiro do Amaral
    • 2
  • Charbel N. El-Hani
    • 3
  1. 1.Faculty of EducationFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Department of ChemistryRural Federal University of Pernambuco (UFRPE)RecifeBrazil
  3. 3.Institute of BiologyFederal University of BahiaSalvadorBrazil

Personalised recommendations