The Dirac Equation: Feynman’s Great Struggle

Chapter
Part of the Archimedes book series (ARIM, volume 26)

Abstract

In this chapter I will show how Feynman used diagrams to represent and modify physical models of electrons (and later their interaction) and how he used these representations to derive quantitative expressions that are “true of the model”.

Keywords

Wave Function Dirac Equation Spatial Dimension Gordon Equation Symbol System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Dirac Equation a. (1946/47). First series of selected folios from Box 11, Folder 2.Google Scholar
  2. Dirac Equation b. (Ca. 1946). Second series of selected folios from Box 11, Folder 2.Google Scholar
  3. Dirac Equation h. (Ca. 1947). Eighth series of selected folios from Box 11, Folder 2.Google Scholar
  4. Harmonic Oscillators b. (Ca. 1946). Second series of selected folios from Box 11, Folder 5.Google Scholar
  5. Space-Time Approach to Quantum Electrodynamics. (Ca. 1947). Series of selected folios from Box 12, Folder 9.Google Scholar
  6. Breit, G. (1928). ‘An Interpretation of Dirac’s Theory of the Electron’. In: Proceedings of the National Academy of Sciences of the United States of America 14.7, pp. 553–559.Google Scholar
  7. Cartwright, N. (1983). How the Laws of Physics Lie. Oxford: Clarendon Press.CrossRefGoogle Scholar
  8. Dirac, P. A. M. (1935). The Principles of Quantum Mechanics by P. A. M. Dirac. 2nd ed. Oxford: Clarendon Press.Google Scholar
  9. Dirac, P. A. M. (1946). ‘Elementary Particles and their Interactions’. In: The Collected Works of P. A. M. Dirac, 1924–1948. Ed. by R. H. Dalitz. Paper given at Princeton University Bicentennial. Cambridge: Cambridge University Press.Google Scholar
  10. Feynman, R. P. (1949). ‘The Theory of Positrons’. In: Physical Review 76.6 (Sept. 1949), pp. 749–759.MathSciNetCrossRefGoogle Scholar
  11. Feynman, R. P. (1966). ‘The Development of the Space-Time View of Quantum Electrodynamics’. In: Science 153.3737. Nobel lecture, pp. 699–708.CrossRefGoogle Scholar
  12. Feynman, R. P. (2005). ‘The Principle of Least Action in Quantum Mechanics’. In: Feynman’s Thesis: A New Approach to Quantum Theory. Ed. by L. M. Brown. Singapore: World Scientific Publishing, pp. 1–69.CrossRefGoogle Scholar
  13. Feynman, R. P. and A. R. Hibbs (1965). Quantum Mechanics and Path Integrals. New York, NY: McGraw-Hill.MATHGoogle Scholar
  14. Fokker, A. D. (1929). ‘Ein invarianter Variationssatz für die Bewegung mehrerer elektrischer Massenteilchen’. In: Zeitschrift für Physik 58, pp. 386–393.ADSMATHCrossRefGoogle Scholar
  15. Galison, P. (1998). ‘Feynman’s War: Modelling Weapons, Modelling Nature’. In: Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics 29.3 (Sept. 1998), pp. 391–434.CrossRefGoogle Scholar
  16. Jacobson, T. and L. S. Schulman (1984). ‘Quantum Stochastics: The Passage from a Relativistic to a Non-relativistic Path Integral’. In: Journal of Physics A: Mathematical and General 17.2, pp. 375–383.MathSciNetADSCrossRefGoogle Scholar
  17. Kauffman, L. H. and H. P. Noyes (1996). ‘Discrete Physics and the Dirac Equation’. In: Physics Letters A 218.3–6 (Aug. 1996), pp. 139–146.CrossRefGoogle Scholar
  18. Schweber, S. S. (1994). QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga. Princeton: Princeton University Press.MATHGoogle Scholar
  19. Tetrode, H. (1922). ‘Über den Wirkungszusammenhang der Welt. Eine Erweiterung der klassischen Dynamik.’ In: Zeitschrift für Physik 10, pp. 317–328.ADSCrossRefGoogle Scholar
  20. Weiner, C. (1966a). ‘Interview with Dr. Richard Feynman, March 4 to June 28, 1966, Vol. 2’. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD.Google Scholar
  21. Weiner, C. (1966b). ‘Interview with Dr. Richard Feynman, March 4 to June 28, 1966, Vol. 1’. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD.Google Scholar
  22. Weisskopf, V. F. (1939). ‘On the Self-Energy and the Electromagnetic Field of the Electron’. In: Physical Review 56.1 (July 1939), pp. 72–85.CrossRefGoogle Scholar
  23. Welton, T. (2007). ‘Memories of Feynman’. In: Physics Today 60.2. Written 1983, pp. 46–52.ADSCrossRefGoogle Scholar
  24. Wheeler, J. A. and R. P. Feynman (1945). ‘Interaction with the Absorber as the Mechanism of Radiation’. In: Reviews of Modern Physics 17.2–3 (Apr. 1945), pp. 157–181.CrossRefGoogle Scholar
  25. ‘Minutes of the Cambridge, Massachusetts, Meeting, February 21 and 22, 1941’ (1941). In: Physical Review 59.8 (Apr. 1941), pp. 682–691.Google Scholar
  26. Schrödinger, E. (1930). ‘Über die kräftefreie Bewegung in der relativistischen Quantenmechanik’. In: Sonderausgabe aus den Sitzungsberichten der Preussischen Akademie der Wissenschaften, Phys. Math. Klasse 24. Berlin: Verlag der Akademie derWissenschaften in Kommission beiWalter de Gruyter u. Co. Reprinted in Schrödinger 1984, pp. 357–368, 418–428.Google Scholar
  27. Schwarzschild, K. (1903). ‘Zur Elektrodynamik. I. Zwei Formen des Prinzips der kleinsten Action in der Elektronentheorie’. In: Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse. Nachrichten, Issue 3, pp. 126–131.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.University of Bern, History and Philosophy of Science, Exact SciencesBernSwitzerland

Personalised recommendations