Role of Microorganisms in Banded Iron Formations

Chapter

Abstract

Banded iron formations (BIF) represent the largest source of iron in the world. They formed throughout the Precambrian, and today are globally distributed on the remnants of the ancient cratons. The first BIF dates back to at least 3.9–3.8 billion years. Little is known about this early period in earth’s history, in particular about the presence of molecular oxygen, O2, and therefore also about the deposition mechanisms of BIF at that time.

Keywords

Ferrous Iron Sulfur Isotope Band Iron Formation Ferric Hydroxide Ancient Craton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by research grants from the German Research Foundation (DFG) made to AK (KA 1736/2-1, 2-2, 4-1, and 12-1), funding from the DFG and the University of Tuebingen to IK, and the Natural Sciences and Engineering Research Council of Canada to KK. We would also like to thank Nicole Posth and Merle Eickhoff for helpful comments.

References

  1. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ (2007) A whiff of oxygen before the great oxidation event? Science 317:1903–1906PubMedCrossRefGoogle Scholar
  2. Ayres DE (1972) Genesis of iron-bearing minerals in banded iron formation mesobands in the Dales Gorge member, Hamersley Group, Western Australia. Econ Geol 67:1214–1233CrossRefGoogle Scholar
  3. Baur ME, Hayes JM, Studley SA, Walter MR (1985) Millimeter-scale variations of stable isotope abundances in carbonates from banded iron formations in the Hamersley Group of Western Australia. Economic Geol 80:270–282CrossRefGoogle Scholar
  4. Berner RA (1969) Goethite stability and the origin of red beds. Geochim Cosmochim Acta 33:267–273CrossRefGoogle Scholar
  5. Beukes NJ, Klein C (1992) Models for iron-formation deposition. In: Schopf JW, Klein C (eds) The proterozoic biosphere: a multidisciplinary study. University of Cambridge Press, Cambridge, UK, pp 147–151Google Scholar
  6. Bjerrum CJ, Canfield DE (2002) Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417:159–162PubMedCrossRefGoogle Scholar
  7. Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81PubMedCrossRefGoogle Scholar
  8. Braterman PS, Cairns-Smith AG, Sloper RW (1983) Photo-oxidation of hydrated Fe2+ – significance for banded iron formations. Nature 303:163–164CrossRefGoogle Scholar
  9. Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036PubMedCrossRefGoogle Scholar
  10. Buick R (1992) The antiquity of oxygenic photosynthesis: evidence for stromatolites in sulphate-deficient Archaean lakes. Science 255:74–77PubMedCrossRefGoogle Scholar
  11. Cairns-Smith AG (1978) Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276:807–808CrossRefGoogle Scholar
  12. Cloud P (1973) Paleoecological significance of the banded iron-formation. Econ Geol 68:1135–1143CrossRefGoogle Scholar
  13. Crowe SA, Jones C, Katsev S et al (2008) Photoferrotrophs thrive in an Archean Ocean analogue. Proc Natl Acad Sci USA 105:15938–15943PubMedCrossRefGoogle Scholar
  14. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758PubMedCrossRefGoogle Scholar
  15. Francois LM (1986) Extensive deposition of banded iron formations was possible without photosynthesis. Nature 320:352–354CrossRefGoogle Scholar
  16. Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–253PubMedCrossRefGoogle Scholar
  17. Garrels RM, Perry EA Jr, MacKenzie FT (1973) Genesis of Precambrian iron-formations and the development of atmospheric oxygen. Econ Geol 68:1173–1179CrossRefGoogle Scholar
  18. Garrels RM (1987) A Model for the deposition of the microbanded Precambrian iron formations. American Journal of Science 287:81–106Google Scholar
  19. Gross GA (1965) Geology of iron deposits in Canada, Volume 1. General geology and evaluation of iron deposits, Geological Survey of Canada Economic Report, 22Google Scholar
  20. Han T-M (1978) Microstructures of magnetite as guides to its origin in some Precambrian iron-formations. Fortschr Mineral 56:105–142Google Scholar
  21. Hayes JM (1983) Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. In: Schopf JW, Klein C (eds) Earth’s earliest biosphere, its origins and evolution. Princeton University Press, Princeton, NJ, pp 291–301Google Scholar
  22. Hegler F, Posth NR, Jiang J, Kappler A (2008) Physiology of phototrophic iron(II)- oxidizing bacteria-implications for modern and ancient environments. FEMS Microbiol Ecol 66:250–260PubMedCrossRefGoogle Scholar
  23. Heising S, Richter L, Ludwig W, Schink B (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a Geospirillum sp. strain. Arch Microbiol 172:116–124PubMedCrossRefGoogle Scholar
  24. Hoffman PF, Schrag DP (2000) Snowball Earth. Sci Am 282(January):68–75Google Scholar
  25. Holland HD (1973) The oceans: a possible source of iron in iron-formations. Econ Geol 68:1169–1172CrossRefGoogle Scholar
  26. Jacobsen SB, Pimentel-Klose MR (1988) A Nd isotopic study of the Hamersley and Michipicoten banded iron formations: the source of REE and Fe in Archean oceans. Earth Planet Sci Lett 87:29–44CrossRefGoogle Scholar
  27. Jaffrés JBD, Shields GA, Wallmann K (2007) The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci Rev 83:83–122CrossRefGoogle Scholar
  28. James HL (1954) Sedimentary facies of iron-formation. Econ Geol 49:236–294CrossRefGoogle Scholar
  29. James HL (1966) Chemistry of the iron-rich sedimentary rocks. In: Fleischer M (ed) Data of geochemistry, 6th edn. Paper 440-W. US Govt. Printing Office, Washington, DCGoogle Scholar
  30. Jaun B, Thauer RK (2007) Nickel and its surprising impact in nature. In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in life sciences, vol 2. Wiley, Chichester, UK, pp 323–356Google Scholar
  31. Jiao Y, Kappler A, Croal LR, Newman DK (2005) Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris Strain TIE-1. Appl Environ Microbiol 71:1–10CrossRefGoogle Scholar
  32. Johnson CM, Beard BL, Beukes NJ, Klein C, O’Leary JM (2003) Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal craton. Contrib Mineral Petrol 144:523–547CrossRefGoogle Scholar
  33. Kappler A, Pasquero C, Konhauser KO, Newman DK (2005) Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33:865–868CrossRefGoogle Scholar
  34. Kasting JF, Howard MT, Wallmann K, Veizer J, Shields G, Jaffrés J (2006) Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet Sci Lett 252:82–93CrossRefGoogle Scholar
  35. Kholodov VN (2008) Siderite formation and evolution of sedimentary iron ore deposition in the Earth’s history. Geol Ore Deposits 50:299–319CrossRefGoogle Scholar
  36. Klein C (2005) Some Precambrian Banded Iron Formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am Mineral 90:1473–1499CrossRefGoogle Scholar
  37. Klein C, Beukes NJ (1989) Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Econ Geol 84:1733–1774CrossRefGoogle Scholar
  38. Knauth LP (2005) Temperature and salinity history of the Precambrian Ocean: implications for the course of microbial evolution. Palaeogeogr Palaeoclimatol Palaeoecol 219:53–69CrossRefGoogle Scholar
  39. Knauth PL, Lowe DR (2003) High Archaen climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol Soc Am Bull 115:566–580CrossRefGoogle Scholar
  40. Konhauser KO, Hamade T, Raiswell R, Morris RC, Ferris FG, Southam G, Canfield DE (2002) Could bacteria have formed the Precambrian banded iron formations? Geology 30:1079–1082CrossRefGoogle Scholar
  41. Konhauser KO, Newman DK, Kappler A (2005) The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3:167–177CrossRefGoogle Scholar
  42. Konhauser KO, Amskold L, Lalonde SV, Posth NR, Kappler A, Anbar A (2007) Decoupling photochemical Fe(II) oxidation from shallow-water deposition. Earth Planet Sci Lett 258:87–100CrossRefGoogle Scholar
  43. Konhauser KO, Pecoits E, Lalonde SV, Papineau D, Nisbet EG, Barley ME, Arndt NT, Zahnle K, Kamber BS (2009) Oceanic nickel depletion and a methanogen famine before the great oxidation event. Nature 458:750–754PubMedCrossRefGoogle Scholar
  44. Krapež B, Barley ME, Pickard AL (2003) Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the Early Paleoproterozoic Brockman supersequence of Western Australia. Sedimentology 50:979–1011CrossRefGoogle Scholar
  45. Laskar J, Robutel P (1993) The chaotic obliquity of the planets. Nature 361:608–612CrossRefGoogle Scholar
  46. McConchie D (1987) The geology and geochemistry of the Joffre and Whaleback Shale members of the Brockman iron formation, Western Australia. In: Appel PWU, LaBerge GL (eds) Precambrian iron-formations. Theophrastus, AthensGoogle Scholar
  47. Mojzsis SJ (2003) Probing early atmospheres. Nature 425:249–251PubMedCrossRefGoogle Scholar
  48. Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3, 800 million years ago. Nature 384:55–59PubMedCrossRefGoogle Scholar
  49. Morris RC (1993) Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Res 60:243–286CrossRefGoogle Scholar
  50. Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41PubMedCrossRefGoogle Scholar
  51. Perry EC, Tan FC, Morey GB (1973) Geology and stable isotope geochemistry of the Biwabik iron formation, northern Minnesota. Econ Geol 68:1110–1125CrossRefGoogle Scholar
  52. Posth NR, Hegler F, Konhauser KO, Kappler A (2008) Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nat Geosci 10:703–708CrossRefGoogle Scholar
  53. Posth NR, Konhauser KO, Kappler A (2010a) Microbiological processes in BIF deposition. In: Glenn C, Jarvis I (eds) Authigenic minerals: sedimentology, geochemistry, origins, distribution and applications. Journal of Sedimentology IAS Special Publication Series (in press)Google Scholar
  54. Posth NR, Konhauser KO, Kappler A (2010b) Banded iron formations. In: Thiel V, Reitner J (eds) Encyclopedia of geobiology. Springer, Hiedelberg (in press)Google Scholar
  55. Rashby SE, Sessions AL, Summons RE, Newman DK (2007) Biosynthesis of 2-ethylbacteriohopanepolyols by an anoxygenic phototroph. Proc Natl Acad Sci USA 104:15099–15104PubMedCrossRefGoogle Scholar
  56. Rasmussen B, Buick R (1999) Redox state of the Archean atmosphere: evidence from detrital heavy metals in ca. 3250–2750 Ma sandstones from the Pilbara Craton. Aust Geol 27:115–118CrossRefGoogle Scholar
  57. Robert F, Chaussidon M (2006) A Paleotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443:969PubMedCrossRefGoogle Scholar
  58. Runnegar B (1991) Precambrian oxygen levels estimated from the biochemistry and physiology of early eukaryotes. Palaeogeogr Palaeoclimatol Palaeoecol 71:97–111CrossRefGoogle Scholar
  59. Schopf JW (1993) Microfossils of the early Archean Apex Chert: new evidence of the antiquity of life. Science 260:640–646PubMedCrossRefGoogle Scholar
  60. Shields GA, Kasting JF (2007) Palaeoclimatology: evidence for hot early oceans? Nature 447:E1PubMedCrossRefGoogle Scholar
  61. Siever R (1992) The silica cycle in the Precambrian. Geochim Cosmochim Acta 56:3265–3272CrossRefGoogle Scholar
  62. Straub KL, Rainey FR, Widdel F (1999) Rhodovulum iodosum sp. nov. and Rhodovulum ­robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Int J Syst Bacteriol 49:729–735PubMedCrossRefGoogle Scholar
  63. Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557PubMedCrossRefGoogle Scholar
  64. Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416 Myr old ocean. Nature 431:549–552PubMedCrossRefGoogle Scholar
  65. Trendall AF (1968) Three Great Basins of Precambrian banded iron formation deposition: a systematic comparison. Geol Soc Am Bull 79:1527–1544CrossRefGoogle Scholar
  66. Vargas M, Kashefi K, Blunt-Harris EL, Lovely DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67PubMedCrossRefGoogle Scholar
  67. Walter XA, Picazo A, Miracle RM, Vicente E, Camacho A, Aragno M, Zopfi J (2009) Anaerobic microbial iron oxidation in an iron-meromictic lake. Geochim Cosmochim Acta 73(13):A1405Google Scholar
  68. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836CrossRefGoogle Scholar
  69. Xiong J (2006) Photosynthesis: what color was its origin? Genome Biol 7:245PubMedCrossRefGoogle Scholar
  70. Yamaguchi KE, Johnson CM, Beard BL, Ohmoto H (2005) Biogeochemical cycling of iron in the Archean Paleoproterozoic Earth: constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons. Chem Geol 218:135–169CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Center for Applied GeosciencesUniversity of TübingenTübingenGermany
  2. 2.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations