High-Throughput Biological Laser Printing: Droplet Ejection Mechanism, Integration of a Dedicated Workstation, and Bioprinting of Cells and Biomaterials

  • Fabien Guillemot
  • Bertrand Guillotin
  • Sylvain Catros
  • Agnès Souquet
  • Candice Mezel
  • Virginie Keriquel
  • Ludovic Hallo
  • Jean-Christophe Fricain
  • Joëlle Amedee


High-Throughput Biological Laser Printing (HT BioLP) requires taking into account spatio-temporal proximity of laser pulses (that means pulse-to-pulse distance and laser pulse frequency). The droplet ejection mechanism is indeed governed by vapor bubble dynamics (bubble growth and collapsing) and it is thus related to both the condition of laser irradiation and the rheological properties of the liquid film (viscosity, surface tension). We present a rapid prototyping workstation which has been designed for HT BioLP applications. It is equipped with an infra-red pulsed laser (pulse duration = 30 ns, wavelength = 1,064 nm, f = 1–100 kHz), galvanometric mirrors (scanning speed up to 2,000 mm/s), micrometric translation stages (x, y, z) and a dedicated software. Then, after describing experimental conditions leading to the high resolution printing (including cell density, laser parameters, etc.) of biological components, we present some typical multi-component and 3D printings achieved using this workstation. Finally, considering different criteria (speed, inoquity, etc.) the potentiality of HT BioLP is discussed as an alternative technology in Tissue Engineering applications.


Laser Energy Vapor Bubble Skin Depth Bubble Radius Laser Repetition Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank GIS ‘Advanced Materials in Aquitaine’ and Région Aquitaine for financial support. In addition, the authors would like to thank Reine Bareille and Murielle Rémy for their help in cell culture experiments.


  1. 1.
    Hutmacher DW (Déc 2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543PubMedCrossRefGoogle Scholar
  2. 2.
    Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (Avr 2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161PubMedCrossRefGoogle Scholar
  3. 3.
    Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL, Kachurin A, Church KH, Park H, Mironov V, Markwald R, Vunjak-Novakovic G, Forgacs G (Mar 2008) Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng A 14(3):413–421CrossRefGoogle Scholar
  4. 4.
    Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (Avr 2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174PubMedCrossRefGoogle Scholar
  5. 5.
    Boland T, Xu T, Damon B, Cui X (Sep 2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917PubMedCrossRefGoogle Scholar
  6. 6.
    Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S (13 Jan 2006) Biocompatible inkjet printing technique for designed seeding of individual living cells. [Internet] [cité 17 Sep 2008]. Available from http://www.liebertonline.com/doi/abs/10.1089/ten.2005.11.1658
  7. 7.
    Saunders RE, Gough JE, Derby B (Jan 2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29(2):193–203PubMedCrossRefGoogle Scholar
  8. 8.
    Nahmias Y, Schwartz RE, Verfaillie CM, Odde DJ (2005) Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng 92(2):129–136PubMedCrossRefGoogle Scholar
  9. 9.
    Nahmias Y, Odde DJ (21 Déc 2006) Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic–endothelial sinusoid-like structures. [Internet] [cité 17 Sep 2008]. Available from http://www.nature.com/nprot/journal/v1/n5/pdf/nprot.2006.386.pdf
  10. 10.
    Young D, Auyeung RCY, Piqué A, Chrisey DB, Dlott DD (Sep 2002) Plume and jetting regimes in a laser based forward transfer process as observed by time-resolved optical microscopy. Appl Surf Sci 30:197–198, 181–187Google Scholar
  11. 11.
    Barron JA, Ringeisen BR, Kim H, Spargo BJ, Chrisey DB (Avr 2004) Application of laser printing to mammalian cells. Thin Solid Films 453–454:383–387CrossRefGoogle Scholar
  12. 12.
    Hopp B, Smausz T, Kresz N, Barna N, Bor Z, Kolozsvári L, Chrisey DB, Szabó A, Nógrádi A (13 Jan 2006) Survival and proliferative ability of various living cell types after laser-induced forward transfer. [Internet] [cité 17 Sep 2008]. Available from http://www.liebertonline.com/doi/abs/10.1089/ten.2005.11.1817
  13. 13.
    Barron JA, Wu P, Ladouceur HD, Ringeisen BR (June 2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6(2):139–147PubMedCrossRefGoogle Scholar
  14. 14.
    Barron JA, Krizman DB, Ringeisen BR (Fév 2005) Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng 33(2):121–130PubMedCrossRefGoogle Scholar
  15. 15.
    Duocastella M, Colina M, Fernández-Pradas J, Serra P, Morenza J (July 2007) Study of the laser-induced forward transfer of liquids for laser bioprinting. Appl Surf Sci 253(19): 7855–7859CrossRefGoogle Scholar
  16. 16.
    Duocastella M, Fernández-Pradas J, Serra P, Morenza J (1 Nov 2008) Jet formation in the laser forward transfer of liquids. Appl Phys A Mater Sci Process 93(2):453–456CrossRefGoogle Scholar
  17. 17.
    Brennen CE (1 Jan 1995) Cavitation and bubble dynamics. [Internet] [cité 23 Jul 2009]. Available from http://caltechbook.library.caltech.edu/1/
  18. 18.
    Xiu-Mei L, Jie H, Jian L, Xiao-Wu N (2008) Growth and collapse of laser-induced bubbles in glycerol–water mixtures. Chinese Phys B 17(7):2574–2579CrossRefGoogle Scholar
  19. 19.
    Mézel C, Hallo L, Souquet A, Guillemot F, Breil J (2009) Self-consistent modeling of a LIFT process in the nanosecond laser pulse regime. Phys Plasma 16(12):123112-12Google Scholar
  20. 20.
    Pearson A, Cox E, Blake JR, Otto SR (Avr 2004) Bubble interactions near a free surface. Eng Anal Bound Elem 28(4):295–313CrossRefGoogle Scholar
  21. 21.
    Robinson PB, Blake JR, Kodama T, Shima A, Tomita Y (15 Juin 2001) Interaction of cavitation bubbles with a free surface. J Appl Phys 89(12):8225–8237CrossRefGoogle Scholar
  22. 22.
    Othon CM, Wu X, Anders JJ, Ringeisen BR (2008) Single-cell printing to form three-dimensional lines of olfactory ensheathing cells. Biomed Mater 3(3):034101PubMedCrossRefGoogle Scholar
  23. 23.
    Cowin S, Author, Telega J, Reviewer (0 Juillet 2003) Bone mechanics handbook, 2nd edn. – Appl Mech Rev 56(4):B61–B63Google Scholar
  24. 24.
    Afshar A, Ghorbani M, Ehsani N, Saeri MR, Sorrell CC (Mai 2003) Some important factors in the wet precipitation process of hydroxyapatite. Mater Des 24(3):197–202CrossRefGoogle Scholar
  25. 25.
    Keriquel V, Guillemot F, Arnault I, Guillotin B, Miraux S, Amédée J, Fricain J-C, Catros S (2010) In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2(1):014101. doi: 10.1088/1758-5082/2/1/014101Google Scholar
  26. 26.
    Boland T, Tao X, Damon BJ, Manley B, Kesari P, Jalota S, Bhaduri S (Avr 2007) Drop-on-demand printing of cells and materials for designer tissue constructs. Mater Sci Eng C 27(3):372–376CrossRefGoogle Scholar
  27. 27.
    Lee W, Debasitis JC, Lee VK, Lee J, Fischer K, Edminster K, Park J, Yoo S (March 2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30(8):1587–1595PubMedCrossRefGoogle Scholar
  28. 28.
    Kériquel V, Guillotin B, Arnault I, Miraux S, Amédée J, Guillemot F, Fricain J, Catros S (2010) In vivo high-throughput biological laser printing of nano-hydroxyapatite in mice calvarial defects. Biofabrication 2(1):014101Google Scholar
  29. 29.
    Zein I, Hutmacher DW, Tan KC, Teoh SH (Fév 2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185PubMedCrossRefGoogle Scholar
  30. 30.
    Gagné L, Rivera G, Laroche G (Nov 2006) Micropatterning with aerosols: application for biomaterials. Biomaterials 27(31):5430–5439PubMedCrossRefGoogle Scholar
  31. 31.
    Prabhakaran MP, Venugopal J, Chyan TT, Hai LB, Chan CK, Tang ALY, Ramakrishna S (25 July 2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng A [Internet] [cité 30 Sep 2008]. Available from http://www.ncbi.nlm.nih.gov/pubmed/18657027
  32. 32.
    Vogel A, Lorenz K, Horneffer V, Huettmann G, von Smolinski D, Gebert A (31 Aoû 2007) Mechanisms of laser-induced dissection and transport of histologic specimens. Biophys J biophysj.106.102277Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Fabien Guillemot
    • 1
    • 2
  • Bertrand Guillotin
    • 1
    • 2
  • Sylvain Catros
    • 1
    • 2
  • Agnès Souquet
    • 1
    • 2
  • Candice Mezel
    • 3
  • Virginie Keriquel
    • 1
    • 2
  • Ludovic Hallo
    • 3
  • Jean-Christophe Fricain
    • 1
    • 2
  • Joëlle Amedee
    • 1
    • 2
  1. 1.INSERM, U577BordeauxFrance
  2. 2.University of Victor Segalen Bordeaux 2BordeauxFrance
  3. 3.Centre Lasers Intenses et Applications, UMR 5107 CEA V CNRS – Université Bordeaux 1CedexFrance

Personalised recommendations