Fabrication of Growth Factor Array Using an Inkjet Printer

  • Kohei Watanabe
  • Tomoyo Fujiyama
  • Rina Mitsutake
  • Masaya Watanabe
  • Yukiko Tazaki
  • Takeshi Miyazaki
  • Ryoichi Matsuda
Chapter

Abstract

Although multiple growth factors influence the fate of cells in vivo, it is technically difficult to reproduce similar condition in vitro. To overcome this problem, we have developed growth factor array, a system to study compound effects of multiple growth factors fabricated with a commercial color inkjet printer. By replacing color inks to 2–4 growth factors and printing them on the tissue culture substratum, we prepared growth factor arrays. Culturing cells on the array, we studied the compound effects of growth factors during myogenic and/or osteogenic differentiation of C2C12 myoblast and mesenchymal stem cells in a single culture dish. The cells grown on the array exhibited various levels of differentiation depending on the dose and the combination of growth factors. Since inkjet printer is capable to manipulate several colors simultaneously, this method is suitable for multivariate analyses of growth factors. This method may provide a powerful tool for regenerative medicine, especially for stem cell research on the control of cell-fate determination and differentiation.

Keywords

Epidermal Growth Factor Osteogenic Differentiation C2C12 Cell Liquid System Inkjet Printer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Deng W, Obrocka M, Fischer I, Prockop DJ (2001) In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 282:148–152PubMedCrossRefGoogle Scholar
  2. 2.
    Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170PubMedCrossRefGoogle Scholar
  3. 3.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  4. 4.
    Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74PubMedCrossRefGoogle Scholar
  5. 5.
    Mummery CL, van Rooyen M, Bracke M, van den Eijnden-van Raaij J, van Zoelen EJ, Alitalo K (1993) Biochem Biophys Res Commun 191(1):188–195PubMedCrossRefGoogle Scholar
  6. 6.
    Avila AM, Davila Garcia MI, Ascarrunz VS, Xiao Y, Kellar KJ (2003) Differential regulation of nicotinic acetylcholine receptors in PC12 cells by nicotine and nerve growth factor. Mol Pharmacol 64:974–986PubMedCrossRefGoogle Scholar
  7. 7.
    Zebboudj AF, Shin V, Bostrom K (2003) Matrix GLA protein and BMP-2 regulate osteoinduction in calcifying vascular cells. J Cell Biochem 90(4):756–765PubMedCrossRefGoogle Scholar
  8. 8.
    Florini JR, Magri KA (1989) Effects of growth factors on myogenic differentiation. Am J Physiol 256:C701–C711PubMedGoogle Scholar
  9. 9.
    Florini JR, Ewton DZ, Magri KA (1991) Hormones, growth factors, and myogenic dfferentiation. Annu Rev Physiol 53:201–216PubMedCrossRefGoogle Scholar
  10. 10.
    Florini JR, Ewton DZ, Coolican SA (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 16:481–517Google Scholar
  11. 11.
    Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 97(21):11307–11312PubMedCrossRefGoogle Scholar
  12. 12.
    Loeser RF, Pacione CA, Chubinskaya S (2003) The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Arthritis Rheum 48:2188–2196PubMedCrossRefGoogle Scholar
  13. 13.
    Ma R, Latif R, Davies T (2009) Thyrotropin-independent induction of thyroid endoderm from embryonic stem cells by Activin A. Endocrinology 150:1970–1975PubMedCrossRefGoogle Scholar
  14. 14.
    Sulzbacher S, Schoroeder IS, Truong TT, Wobus AM (2009) ActivinA-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors – The influence of differentiation factors and culture conditions. Stem Cell Rev 5:159–173PubMedCrossRefGoogle Scholar
  15. 15.
    Mironov V, Reis N, Derby B (2006) Review: bioprinting: a beginning. Tissue Eng 12(4):631–634PubMedCrossRefGoogle Scholar
  16. 16.
    Alper J (2004) Bioengineering. Biology and the inkjets. Science 305(5692):1895PubMedCrossRefGoogle Scholar
  17. 17.
    Allain LR, Askari M, Stokes DL, Vo-Dinh T (2001) Microarray sampling-platform fabrication using bubble-jet technology for a biochip system. Fresenius J Anal Chem 371(2):146–150PubMedCrossRefGoogle Scholar
  18. 18.
    Goldmann T, Gonzalez JS (2000) DNA-printing: utilization of a standard inkjet printer for the transfer of nucleic acids to solid supports. J Biochem Biophys Methods 42:105–110PubMedCrossRefGoogle Scholar
  19. 19.
    Okamoto T, Suzuki T, Yamamoto N (2000) Microarray fabrication with covalent attachment of DNA using Bubble Jet technology. Nature Biotech 18:438–441CrossRefGoogle Scholar
  20. 20.
    Nilsson S, Lager C, Laurell T, Birnbaum S (1995) Thin-Layer immunoaffinity chromatography with bar code quantitation of C-reactive protein. Anal Chem 67:3051–3056PubMedCrossRefGoogle Scholar
  21. 21.
    Roda A, Guardigli M, Russo C, Pasini P, Baraldini M (2000) Protein microdeposition using a conventional ink-jet printer. Bio Techniques 28:492–496Google Scholar
  22. 22.
    Klebe RJ (1988) Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res 179:362–373PubMedCrossRefGoogle Scholar
  23. 23.
    Sanjana NE, Fuller SB (2004) A fast flexible ink-jet printing method for patterning dissociated neurons in culture. J Neurosci Methods 136(2):151–163PubMedCrossRefGoogle Scholar
  24. 24.
    Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588PubMedGoogle Scholar
  25. 25.
    Watanabe K, Miyazaki T, Matsuda R (2003) Growth factor array fabrication using a color ink jet printer. Zool Sci 20:429–434PubMedCrossRefGoogle Scholar
  26. 26.
    Campbell PG, Weiss LE (2007) Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther 7(8):1123–1127PubMedCrossRefGoogle Scholar
  27. 27.
    Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26:127–134PubMedCrossRefGoogle Scholar
  28. 28.
    Ito Y, Chen G, Imanishi Y (1996) Photoimmobilization of insulin onto polystyrene dishes for protein-free cell culture. Biotechnol Prog 12:700–702PubMedCrossRefGoogle Scholar
  29. 29.
    Matsuda T, Sugawara T (1995) Photochemical protein fixation on polymer surfaces via derivatized phenyl azido group. Langmuir 11:2272–2276CrossRefGoogle Scholar
  30. 30.
    Gregorius K, Mouritsen S, Elsner HI (1995) Hydrocoating: a new method for coupling biomolecules to solid phases. J Immunol Methods 181:65–73PubMedCrossRefGoogle Scholar
  31. 31.
    Piwowarczyk W, Matsuda R (1990) A large scale dot blot ELISA using the 96-well culture plate. J Immunol Methods 132(1):147–149PubMedCrossRefGoogle Scholar
  32. 32.
    VandeVondele S, Voros J, Hubbell JA (2003) RGD-Grafted Poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol Bioeng 82(7):784–790PubMedCrossRefGoogle Scholar
  33. 33.
    Lennon DP, Haynesworth SE, Dennis JE, Caplan AI (1995) A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stemcells. Exp Cell Res 219:211–222PubMedCrossRefGoogle Scholar
  34. 34.
    Ito Y, Li JS, Takahashi T, Imanishi Y, Okabayashi Y, Kido Y, Kasuga M (1997) Enhancement of the mitogenic effect by artificial juxtacrine stimulation using immobilized EGF. J Biochem 121:514–520PubMedCrossRefGoogle Scholar
  35. 35.
    Milasincic DJ, Calera MR, Farmer SR, Pilch PF (1996) Stimulation of C2C12 myoblast growth by basic fibroblast growth factor and insulin-like growth factor 1 can occur via mitogen-activated protein kinase-dependent and -independent pathways. Mol Cell Biol 16(11):5964–5973PubMedGoogle Scholar
  36. 36.
    Vaidya TB, Rhodes SJ, Taparowsky EJ, Konieczny SF (1989) Fibroblast growth factor and transforming growth factor beta repress transcription of the myogenic regulatory gene MyoD1. Mol Cell Biol 9(8):3576–3579PubMedGoogle Scholar
  37. 37.
    Tollefsen SE, Sadow JL, Rotwein P (1989) Coordinate expression of insulin-like growth factor II and its receptor during muscle differentiation. Proc Natl Acad Sci USA 86:1543–1547PubMedCrossRefGoogle Scholar
  38. 38.
    Ito Y (1998) Tissue engineering by immobilized growth factors. Mater Sci Eng C 6(4):267–274CrossRefGoogle Scholar
  39. 39.
    Higashiyama S, Iwamoto R, Goishi K, Raab G, Taniguchi N, Klagsbrun M, Mekada E (1995) The membrane protein CD9/DRAP 27 potentiates the juxtacrine growth factor activity of the membrane-anchored heparin-binding EGF-like growth factor. J Cell Biol 128:929–938PubMedCrossRefGoogle Scholar
  40. 40.
    Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6:112–126PubMedCrossRefGoogle Scholar
  41. 41.
    Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–2089PubMedCrossRefGoogle Scholar
  42. 42.
    Wang Y, Pennock S, Chen X, Wang Z (2002) Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 22:7279–7290PubMedCrossRefGoogle Scholar
  43. 43.
    Bhang SH, Jeon O, Choi CY, Kwon YH, Kim BS (2007) Controlled release of nerve growth factor from fibrin gel. J Biomed Mater Res A 80(4):998–1002PubMedGoogle Scholar
  44. 44.
    Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 27:1755–1766CrossRefGoogle Scholar
  45. 45.
    Hanada K, Dennis JE, Caplan AI (1997) Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res 12:1606–1614PubMedCrossRefGoogle Scholar
  46. 46.
    Li H, Bartold PM, Zhang CZ, Clarkson RW, Young WG, Waters MJ (1998) Growth hormone and insulin-like growth factor I induce bone morphogenetic proteins 2 and 4: a mediator role in bone and tooth formation? Endocrinology 139:3855–3862PubMedCrossRefGoogle Scholar
  47. 47.
    Raiche AT, Puleo DA (2004) In vitro effects of combined and sequential delivery of two bone growth factors. Biomaterials 25(4):677–685PubMedCrossRefGoogle Scholar
  48. 48.
    Chen G, Ito Y (2001) Gradient micropattern immobilization of EGF to investigate the effect of artificial juxtacrine stimulation. Biomaterials 22:2453–2457PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kohei Watanabe
    • 1
    • 2
  • Tomoyo Fujiyama
    • 1
    • 2
  • Rina Mitsutake
    • 1
  • Masaya Watanabe
    • 1
    • 2
  • Yukiko Tazaki
    • 1
  • Takeshi Miyazaki
    • 2
  • Ryoichi Matsuda
    • 1
  1. 1.Department of Life SciencesThe University of TokyoTokyoJapan
  2. 2.Canon Inc.TokyoJapan

Personalised recommendations