Endotoxins: Lipopolysaccharides of Gram-Negative Bacteria

Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 53)

Abstract

Endotoxin refers lipopolysaccharide that constitutes the outer leaflet of the outer membrane of most Gram-negative bacteria. Lipopolysaccharide is comprised of a hydrophilic polysaccharide and a hydrophobic component known as lipid A which is responsible for the major bioactivity of endotoxin. Lipopolysaccharide can be recognized by immune cells as a pathogen-associated molecule through Toll-like receptor 4. Most enzymes and genes related to the biosynthesis and export of lipopolysaccharide have been identified in Escherichia coli, and they are shared by most Gram-negative bacteria based on available genetic information. However, the detailed structure of lipopolysaccharide differs from one bacterium to another, suggesting that additional enzymes that can modify the basic structure of lipopolysaccharide exist in bacteria, especially some pathogens. These structural modifications of lipopolysaccharide are sometimes tightly regulated. They are not required for survival but closely related to the virulence of bacteria. In this chapter we will focus on the mechanism of biosynthesis and export of lipopolysaccharide in bacteria.

Keywords

Outer membrane Lipopolysaccharide Endotoxin Lipid A LPS biosynthesis 

Abbreviations

LPS

lipopolysaccharide

TLR4

Toll-like receptor 4

Kdo

3-deoxy-d-manno-octulosonic acid

Hep

l-glycero-d-manno-heptose

CAMPs

cationic antimicrobial peptides

α-l-Ara4N

4-amino-4-deoxy-α-l-arabinose

Und-P-α-l-Ara4N

undecaprenyl phosphate-l-Ara4N

galacturonic acid

GalA

Notes

Acknowledgements

Funding was provided by grants from the National Natural Science Foundation of China (NSFC 30770114, NSFC30870074), the Program of State Key Laboratory of Food Science and Technology (SKLF-MB-200801), the 111 project (111-2-06), the Basic Research Programs of Jiangsu Province (BK2009003), and the Human Science Frontier Programme (RGP0016/2005C).

References

  1. Abeyrathne, P.D., Daniels, C., Poon, K.K., Matewish, M.J., Lam, J.S. Functional characterization of WaaL, a ligase associated with linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa lipopolysaccharide. J Bacteriol 187 (2005) 3002–3012.PubMedCrossRefGoogle Scholar
  2. Ahn, V.E., Lo, E.I., Engel, C.K., Chen, L., Hwang, P.M., Kay, L.E., Bishop, R.E., Prive, G.G. A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin. EMBO J 23 (2004) 2931–2941.PubMedCrossRefGoogle Scholar
  3. Akira, S., Uematsu, S., Takeuchi, O. Pathogen recognition and innate immunity. Cell 124 (2006) 783–801.PubMedCrossRefGoogle Scholar
  4. Alaimo, C., Catrein, I., Morf, L., Marolda, C.L., Callewaert, N., Valvano, M.A., Feldman, M.F., Aebi, M. Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO J 25 (2006) 967–976.PubMedCrossRefGoogle Scholar
  5. Alpuche Aranda, C.M., Swanson, J.A., Loomis, W.P., Miller, S.I. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci USA 89 (1992) 10079–10083.PubMedCrossRefGoogle Scholar
  6. Ancuta, P., Pedron, T., Girard, R., Sandstrom, G., Chaby, R. Inability of the Francisella tularensis lipopolysaccharide to mimic or to antagonize the induction of cell activation by endotoxins. Infect Immun 64 (1996) 2041–2046.PubMedGoogle Scholar
  7. Babinski, K.J., Kanjilal, S.J., Raetz, C.R.H. Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an Escherichia coli mutant lacking the lpxH gene. J Biol Chem 277 (2002a) 25947–25956.PubMedCrossRefGoogle Scholar
  8. Babinski, K.J., Ribeiro, A.A., Raetz, C.R.H. The Escherichia coli gene encoding the UDP-2,3-diacylglucosamine pyrophosphatase of lipid A biosynthesis. J Biol Chem 277 (2002b) 25937–25946.PubMedCrossRefGoogle Scholar
  9. Bader, M.W., Navarre, W.W., Shiau, W., Nikaido, H., Frye, J.G., McClelland, M., Fang, F.C., Miller, S.I. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol 50 (2003) 219–230.PubMedCrossRefGoogle Scholar
  10. Bader, M.W., Sanowar, S., Daley, M.E., Schneider, A.R., Cho, U., Xu, W., Klevit, R.E., Le Moual, H., Miller, S.I. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122 (2005) 461–472.PubMedCrossRefGoogle Scholar
  11. Barb, A.W., Jiang, L., Raetz, C.R., Zhou, P. Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: time-dependent inhibition and specificity in ligand binding. Proc Natl Acad Sci USA 104 (2007) 18433–18438.PubMedCrossRefGoogle Scholar
  12. Barb, A.W., Leavy, T.M., Robins, L.I., Guan, Z., Six, D.A., Zhou, P., Hangauer, M.J., Bertozzi, C.R., Raetz, C.R. Uridine-based inhibitors as new leads for antibiotics targeting Escherichia coli LpxC. Biochemistry 48 (2009) 3068–3077.PubMedCrossRefGoogle Scholar
  13. Bartling, C.M., Raetz, C.R. Crystal structure and acyl chain selectivity of Escherichia coli LpxD, the N-acyltransferase of lipid a biosynthesis. Biochemistry 48 (2009) 8672–8683.PubMedCrossRefGoogle Scholar
  14. Basu, S.S., Karbarz, M.J., Raetz, C.R.H. Expression cloning and characterization of the C28 acyltransferase of lipid A biosynthesis in Rhizobium leguminosarum. J Biol Chem 277 (2002) 28959–28971.PubMedCrossRefGoogle Scholar
  15. Beutler, B., Rietschel, E.T. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3 (2003) 169–176.PubMedCrossRefGoogle Scholar
  16. Bishop, R.E. Structural biology of membrane-intrinsic beta-barrel enzymes: sentinels of the bacterial outer membrane. Biochim Biophys Acta 1778 (2008) 1881–1896.PubMedCrossRefGoogle Scholar
  17. Boon Hinckley, M., Reynolds, C.M., Ribeiro, A.A., McGrath, S.C., Cotter, R.J., Lauw, F.N., Golenbock, D.T., Raetz, C.R. A Leptospira interrogans enzyme with similarity to yeast Ste14p that methylates the 1-phosphate group of lipid A. J Biol Chem 280 (2005) 30214–30224.PubMedCrossRefGoogle Scholar
  18. Bos, M.P., Tefsen, B., Geurtsen, J., Tommassen, J. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc Natl Acad Sci USA 101 (2004a) 9417–9422.PubMedCrossRefGoogle Scholar
  19. Bos, M.P., Tefsen, B., Geurtsen, J., Tommassen, J. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc Natl Acad Sci USA 101 (2004b) 9417–9422.PubMedCrossRefGoogle Scholar
  20. Breazeale, S.D., Ribeiro, A.A., McClerren, A.L., Raetz, C.R.H. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-amino-4-deoxy-L-arabinose. Identification and function of UDP-4-deoxy-4-formamido-L-arabinose. J Biol Chem 280 (2005) 14154–14167.PubMedCrossRefGoogle Scholar
  21. Breazeale, S.D., Ribeiro, A.A., Raetz, C.R.H. Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli. J Biol Chem 277 (2002) 2886–2896.PubMedCrossRefGoogle Scholar
  22. Breazeale, S.D., Ribeiro, A.A., Raetz, C.R.H. Origin of lipid A species modified with 4-amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli. J Biol Chem 279 (2003) 24731–24739.CrossRefGoogle Scholar
  23. Brozek, K.A., Hosaka, K., Robertson, A.D., Raetz, C.R.H. Biosynthesis of lipopolysaccharide in Escherichia coli: cytoplasmic enzymes that attach 3-deoxy-D-manno-octulosonic acid to lipid A. J Biol Chem 264 (1989) 6956–6966.PubMedGoogle Scholar
  24. Brozek, K.A., Raetz, C.R.H. Biosynthesis of lipid A in Escherichia coli: acyl carrier protein-dependent incorporation of laurate and myristate. J Biol Chem 265 (1990) 15410–15417.PubMedGoogle Scholar
  25. Buetow, L., Smith, T.K., Dawson, A., Fyffe, S., Hunter, W.N. Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis. Proc Natl Acad Sci USA 104 (2007) 4321–4326.PubMedCrossRefGoogle Scholar
  26. Carpenter, S., O'Neill, L.A. How important are Toll-like receptors for antimicrobial responses? Cell Microbiol 9 (2007) 1891–1901.PubMedCrossRefGoogle Scholar
  27. Cho, U.S., Bader, M.W., Amaya, M.F., Daley, M.E., Klevit, R.E., Miller, S.I., Xu, W. Metal bridges between the PhoQ sensor domain and the membrane regulate transmembrane signaling. J Mol Biol 356 (2006) 1193–1206.PubMedCrossRefGoogle Scholar
  28. Coggins, B.E., Li, X., McClerren, A.L., Hindsgaul, O., Raetz, C.R.H., Zhou, P. Structure of the LpxC deacetylase with a bound substrate-analog inhibitor. Nat Struct Biol 10 (2003) 645–651.PubMedCrossRefGoogle Scholar
  29. Crowell, D.N., Anderson, M.S., Raetz, C.R.H. Molecular cloning of the genes for lipid A disaccharide synthase and UDP-N-acetylglucosamine acyltransferase in Escherichia coli. J Bacteriol 168 (1986) 152–159.PubMedGoogle Scholar
  30. Crowell, D.N., Reznikoff, W.S., Raetz, C.R.H. Nucleotide sequence of the Escherichia coli gene for lipid A disaccharide synthase. J Bacteriol 169 (1987) 5727–5734.PubMedGoogle Scholar
  31. Doerrler, W.T. Lipid trafficking to the outer membrane of Gram-negative bacteria. Mol Microbiol 60 (2006) 542–552.PubMedCrossRefGoogle Scholar
  32. Doerrler, W.T., Gibbons, H.S., Raetz, C.R.H. MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J Biol Chem 279 (2004) 45102–45109.PubMedCrossRefGoogle Scholar
  33. Doerrler, W.T., Raetz, C.R.H. ATPase activity of the MsbA lipid flippase of Escherichia coli. J Biol Chem 277 (2002) 36697–36705.PubMedCrossRefGoogle Scholar
  34. Feldman, M.F., Marolda, C.L., Monteiro, M.A., Perry, M.B., Parodi, A.J., Valvano, M.A. The activity of a putative polyisoprenol-linked sugar translocase (Wzx) involved in Escherichia coli O antigen assembly is independent of the chemical structure of the O repeat. J Biol Chem 274 (1999) 35129–35138.PubMedCrossRefGoogle Scholar
  35. Galanos, C., Lüderitz, O., Rietschel, E.T., Westphal, O., Brade, H., Brade, L., Freudenberg, M., Schade, U., Imoto, M., Yoshimura, H., Kusumoto, S., Shiba, T. Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities. Eur J Biochem 148 (1985) 1–5.PubMedCrossRefGoogle Scholar
  36. Garcia Vescovi, E., Soncini, F.C., Groisman, E.A. Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84 (1996) 165–174.PubMedCrossRefGoogle Scholar
  37. Garrett, T.A., Kadrmas, J.L., Raetz, C.R.H. Identification of the gene encoding the Escherichia coli lipid A 4ʹ kinase. Facile synthesis of endotoxin analogs with recombinant LpxK. J Biol Chem 272 (1997) 21855–21864.PubMedCrossRefGoogle Scholar
  38. Garrett, T.A., Que, N.L., Raetz, C.R.H. Accumulation of a lipid A precursor lacking the 4'-phosphate following inactivation of the Escherichia coli lpxK gene. J Biol Chem 273 (1998) 12457–12465.PubMedCrossRefGoogle Scholar
  39. Gibbons, H.S., Kalb, S.R., Cotter, R.J., Raetz, C.R.H. Role of Mg++ and pH in the modification of Salmonella lipid A following endocytosis by macrophage tumor cells. Mol Microbiol 55 (2005) 425–440.PubMedCrossRefGoogle Scholar
  40. Gibbons, H.S., Lin, S., Cotter, R.J., Raetz, C.R.H. Oxygen requirement for the biosynthesis of the S-2-hydroxymyristate moiety in Salmonella typhimurium lipid A. Function of LpxO, a new Fe(II)/alpha-ketoglutarate-dependent dioxygenase homologue. J Biol Chem 275 (2000) 32940–32949.PubMedCrossRefGoogle Scholar
  41. Gibbons, H.S., Reynolds, C.M., Guan, Z., Raetz, C.R. An inner membrane dioxygenase that generates the 2-hydroxymyristate moiety of Salmonella lipid A. Biochemistry 47 (2008) 2814–2825.PubMedCrossRefGoogle Scholar
  42. Golenbock, D.T., Hampton, R.Y., Qureshi, N., Takayama, K., Raetz, C.R.H. Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J Biol Chem 266 (1991) 19490–19498.PubMedGoogle Scholar
  43. Gooderham, W.J., Hancock, R.E. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol Rev 33 (2009) 279–294.PubMedCrossRefGoogle Scholar
  44. Groisman, E.A., Kayser, J., Soncini, F.C. Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J Bacteriol 179 (1997) 7040–7045.PubMedGoogle Scholar
  45. Gunn, J.S., Lim, K.B., Krueger, J., Kim, K., Guo, L., Hackett, M., Miller, S.I. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 27 (1998) 1171–1182.PubMedCrossRefGoogle Scholar
  46. Gunn, J.S., Ryan, S.S., Van Velkinburgh, J.C., Ernst, R.K., Miller, S.I. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect Immun 68 (2000) 6139–6146.PubMedCrossRefGoogle Scholar
  47. Guo, L., Lim, K.B., Gunn, J.S., Bainbridge, B., Darveau, R.P., Hackett, M., Miller, S.I. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 276 (1997) 250–253.PubMedCrossRefGoogle Scholar
  48. Guo, L., Lim, K.B., Poduje, C.M., Daniel, M., Gunn, J.S., Hackett, M., Miller, S.I. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95 (1998) 189–198.PubMedCrossRefGoogle Scholar
  49. Haag, A.F., Wehmeier, S., Beck, S., Marlow, V.L., Fletcher, V., James, E.K., Ferguson, G.P. The Sinorhizobium meliloti LpxXL and AcpXL proteins play important roles in bacteroid development within alfalfa. J Bacteriol 191 (2009) 4681–4686.PubMedCrossRefGoogle Scholar
  50. Hawkins, L.D., Christ, W.J., Rossignol, D.P. Inhibition of endotoxin response by synthetic TLR4 antagonists. Curr Top Med Chem 4 (2004) 1147–1171.PubMedCrossRefGoogle Scholar
  51. Heath, R.J., Rock, C.O. Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J Biol Chem 271 (1996) 27795–27801.PubMedCrossRefGoogle Scholar
  52. Heine, H., Muller-Loennies, S., Brade, L., Lindner, B., Brade, H. Endotoxic activity and chemical structure of lipopolysaccharides from Chlamydia trachomatis serotypes E and L2 and Chlamydophila psittaci 6BC. Eur J Biochem 270 (2003) 440–450.PubMedCrossRefGoogle Scholar
  53. Hwang, P.M., Bishop, R.E., Kay, L.E. The integral membrane enzyme PagP alternates between two dynamically distinct states. Proc Natl Acad Sci USA 101 (2004) 9618–9623.PubMedCrossRefGoogle Scholar
  54. Joiner, K.A. Complement evasion by bacteria and parasites. Annu Rev Microbiol 42 (1988) 201–230.PubMedCrossRefGoogle Scholar
  55. Kanjilal-Kolar, S., Basu, S.S., Kanipes, M.I., Guan, Z., Garrett, T.A., Raetz, C.R. Expression cloning of three Rhizobium leguminosarum lipopolysaccharide core galacturonosyltransferases. J Biol Chem 281 (2006) 12865–12878.PubMedCrossRefGoogle Scholar
  56. Kanipes, M.I., Lin, S., Cotter, R.J., Raetz, C.R. Ca2+-induced phosphoethanolamine transfer to the outer 3-deoxy-D-manno-octulosonic acid moiety of Escherichia coli lipopolysaccharide. A novel membrane enzyme dependent upon phosphatidylethanolamine. J Biol Chem 276 (2001) 1156–1163.PubMedCrossRefGoogle Scholar
  57. Karbarz, M.J., Kalb, S.R., Cotter, R.J., Raetz, C.R.H. Expression cloning and biochemical characterization of a Rhizobium leguminosarum lipid A 1-phosphatase. J Biol Chem 278 (2003) 39269–39279.PubMedCrossRefGoogle Scholar
  58. Kawasaki, K., Ernst, R.K., Miller, S.I. 3-O-deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through Toll-like receptor 4. J Biol Chem 279 (2004) 20044–20048.PubMedCrossRefGoogle Scholar
  59. Klein, G., Lindner, B., Brabetz, W., Brade, H., Raina, S. Escherichia coli K-12 suppressor-free mutants lacking early glycosyltransferases and late acyltransferases: minimal lipopolysaccharide structure and induction of envelope stress response. J Biol Chem 284 (2009) 15369–15389.PubMedCrossRefGoogle Scholar
  60. Kox, L.F., Wosten, M.M., Groisman, E.A. A small protein that mediates the activation of a two-component system by another two-component system. EMBO J 19 (2000) 1861–1872.PubMedCrossRefGoogle Scholar
  61. Larue, K., Kimber, M.S., Ford, R., Whitfield, C. Biochemical and structural analysis of bacterial O-antigen chain length regulator proteins reveals a conserved quaternary structure. J Biol Chem 284 (2009) 7395–7403.PubMedCrossRefGoogle Scholar
  62. Lee, H., Hsu, F.F., Turk, J., Groisman, E.A. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J Bacteriol 186 (2004) 4124–4133.PubMedCrossRefGoogle Scholar
  63. Liu, D., Cole, R.A., Reeves, P.R. An O-antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase. J Bacteriol 178 (1996) 2102–2107.PubMedGoogle Scholar
  64. Ma, B., Reynolds, C.M., Raetz, C.R. Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant. Proc Natl Acad Sci USA 105 (2008) 13823–13828.PubMedCrossRefGoogle Scholar
  65. Macpherson, D.F., Manning, P.A., Morona, R. Genetic analysis of the rfbX gene of Shigella flexneri. Gene 155 (1995) 9–17.PubMedCrossRefGoogle Scholar
  66. Marolda, C.L., Feldman, M.F., Valvano, M.A. Genetic organization of the O7-specific lipopolysaccharide biosynthesis cluster of Escherichia coli VW187 (O7:K1). Microbiology 145 (1999) 2485–2495.PubMedCrossRefGoogle Scholar
  67. Marolda, C.L., Vicarioli, J., Valvano, M.A. Wzx proteins involved in biosynthesis of O antigen function in association with the first sugar of the O-specific lipopolysaccharide subunit. Microbiology 150 (2004) 4095–4105.PubMedCrossRefGoogle Scholar
  68. Martin-Orozco, N., Touret, N., Zaharik, M.L., Park, E., Kopelman, R., Miller, S., Finlay, B.B., Gros, P., Grinstein, S. Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages. Mol Biol Cell 17 (2006) 498–510.PubMedCrossRefGoogle Scholar
  69. Metzger, L.E., Raetz, C.R. Purification and characterization of the lipid A disaccharide synthase (LpxB) from Escherichia coli, a peripheral membrane protein. Biochemistry 48 (2009) 11559–11571.PubMedCrossRefGoogle Scholar
  70. Mohan, S., Kelly, T.M., Eveland, S.S., Raetz, C.R.H., Anderson, M.S. An Escherichia coli gene (fabZ) encoding R-3-hydroxymyristoyl acyl carrier protein dehydrase. Relation to fabA and suppression of mutations in lipid A biosynthesis. J Biol Chem 269 (1994) 32896–32903.PubMedGoogle Scholar
  71. Montminy S.W., Khan N., McGrath S., Walkowicz M.J., Sharp F., Conlon J.E., et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol 7 (2006) 1066–1073.PubMedCrossRefGoogle Scholar
  72. Muller-Loennies, S., Lindner, B., Brade, H. Structural analysis of deacylated lipopolysaccharide of Escherichia coli strains 2513 (R4 core-type) and F653 (R3 core-type). Eur J Biochem 269 (2002) 5982–5991.PubMedCrossRefGoogle Scholar
  73. Muller-Loennies, S., Lindner, B., Brade, H. Structural analysis of oligosaccharides from lipopolysaccharide (LPS) of Escherichia coli K12 strain W3100 reveals a link between inner and outer core LPS biosynthesis. J Biol Chem 278 (2003) 34090–34101.PubMedCrossRefGoogle Scholar
  74. Overgaard, M., Johansen, J., Moller-Jensen, J., Valentin-Hansen, P. Switching off small RNA regulation with trap-mRNA. Mol Microbiol 73 (2009) 790–800.PubMedCrossRefGoogle Scholar
  75. Parillo, J.E. Pathogenic mechanisms of septic shock. N Engl J Med 328 (1993) 1471–1477.CrossRefGoogle Scholar
  76. Perez, J.M., McGarry, M.A., Marolda, C.L., Valvano, M.A. Functional analysis of the large periplasmic loop of the Escherichia coli K-12 WaaL O-antigen ligase. Mol Microbiol 70 (2008) 1424–1440.PubMedCrossRefGoogle Scholar
  77. Persing, D.H., Coler, R.N., Lacy, M.J., Johnson, D.A., Baldridge, J.R., Hershberg, R.M., Reed, S.G. Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol 10 (2002) S32–37.PubMedCrossRefGoogle Scholar
  78. Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Huffel, C.V., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B., Beutler, B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282 (1998) 2085–2088.PubMedCrossRefGoogle Scholar
  79. Que, N.L.S., Ribeiro, A.A., Raetz, C.R.H. Two-dimensional NMR spectroscopy and structures of six lipid A species from Rhizobium etli CE3; detection of an acyloxyacyl residue in each component and origin of the aminogluconate moiety. J Biol Chem 275 (2000b) 28017–28027.PubMedGoogle Scholar
  80. Que-Gewirth, N.L.S., Karbarz, M.J., Kalb, S.R., Cotter, R.J., Raetz, C.R.H. Origin of the 2-amino-2-deoxy-gluconate unit in Rhizobium leguminosarum lipid A. Expression cloning of the outer membrane oxidase LpxQ. J Biol Chem 278 (2003) 12120–12129.PubMedCrossRefGoogle Scholar
  81. Raetz, C.R., Garrett, T.A., Reynolds, C.M., Shaw, W.A., Moore, J.D., Smith, D.C., Jr., Ribeiro, A.A., Murphy, R.C., Ulevitch, R.J., Fearns, C., Reichart, D., Glass, C.K., Benner, C., Subramaniam, S., Harkewicz, R., Bowers-Gentry, R.C., Buczynski, M.W., Cooper, J.A., Deems, R.A., Dennis, E.A. Kdo2-lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4. J Lipid Res 47 (2006) 1097–1111.PubMedCrossRefGoogle Scholar
  82. Raetz, C.R., Reynolds, C.M., Trent, M.S., Bishop, R.E. Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76 (2007) 295–329.PubMedCrossRefGoogle Scholar
  83. Raetz, C.R.H., Whitfield, C. Lipopolysaccharide endotoxins. Annu Rev Biochem 71 (2002) 635–700.PubMedCrossRefGoogle Scholar
  84. Reynolds, C.M., Kalb, S.R., Cotter, R.J., Raetz, C.R. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant. J Biol Chem 280 (2005) 21202–21211.PubMedCrossRefGoogle Scholar
  85. Reynolds, C.M., Raetz, C.R. Replacement of lipopolysaccharide with free lipid A molecules in Escherichia coli mutants lacking all core sugars. Biochemistry 48 (2009) 9627–9640.PubMedCrossRefGoogle Scholar
  86. Reynolds, C.M., Ribeiro, A.A., McGrath, S.C., Cotter, R.J., Raetz, C.R., Trent, M.S. An outer membrane enzyme encoded by Salmonella typhimurium lpxR that removes the 3'-acyloxyacyl moiety of lipid A. J Biol Chem 281 (2006) 21974–21987.PubMedCrossRefGoogle Scholar
  87. Rietschel, E.T., Kirikae, T., Schade, F.U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A.J., Zähringer, U., Seydel, U., Di Padova, F., Schreier, M., Brade, H. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8 (1994) 217–225.PubMedGoogle Scholar
  88. Roland, K.L., Martin, L.E., Esther, C.R., Spitznagel, J.K. Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new two-component regulatory system with a possible role in virulence. J Bacteriol 175 (1993) 4154–4164.PubMedGoogle Scholar
  89. Roncero, C., Casadaban, M.J. Genetic analysis of the genes involved in synthesis of the lipopolysaccharide core in Escherichia coli K-12: three operons in the rfa locus. J Bacteriol 174 (1992) 3250–3260.PubMedGoogle Scholar
  90. Ruiz, N., Gronenberg, L.S., Kahne, D., Silhavy, T.J. Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli. Proc Natl Acad Sci USA 105 (2008) 5537–5542.PubMedCrossRefGoogle Scholar
  91. Rutten, L., Geurtsen, J., Lambert, W., Smolenaers, J.J., Bonvin, A.M., de Haan, A., van der Ley, P., Egmond, M.R., Gros, P., Tommassen, J. Crystal structure and catalytic mechanism of the LPS 3-O-deacylase PagL from Pseudomonas aeruginosa. Proc Natl Acad Sci USA 103 (2006) 7071–7076.PubMedCrossRefGoogle Scholar
  92. Rutten, L., Mannie, J.P., Stead, C.M., Raetz, C.R., Reynolds, C.M., Bonvin, A.M., Tommassen, J.P., Egmond, M.R., Trent, M.S., Gros, P. Active-site architecture and catalytic mechanism of the lipid A deacylase LpxR of Salmonella typhimurium. Proc Natl Acad Sci USA 106 (2009) 1960–1964.PubMedCrossRefGoogle Scholar
  93. Schnaitman, C.A., Klena, J.D. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 57 (1993) 655–682.PubMedGoogle Scholar
  94. Shaffer, S.A., Harvey, M.D., Goodlett, D.R., Ernst R.K. Structural heterogeneity and environmentally regulated remodeling of Francisella tularensis subspecies novicida lipid A characterized by tandem mass spectrometry. J Am Soc Mass Spectrom 18 (2007) 1080–1092.PubMedCrossRefGoogle Scholar
  95. Soncini, F.C., Garcia Vescovi, E., Solomon, F., Groisman, E.A. Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J Bacteriol 178 (1996) 5092–5099.PubMedGoogle Scholar
  96. Song F., Guan Z., Raetz C.R.H. Biosynthesis of undecaprenyl phosphate–galactosamine and undecaprenyl phosphate–glucose in Francisella novicida. Biochemistry 48 (2009) 1173–1182.PubMedCrossRefGoogle Scholar
  97. Sperandeo, P., Cescutti, R., Villa, R., Di Benedetto, C., Candia, D., Deho, G., Polissi, A. Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli. J Bacteriol 189 (2007) 244–253.PubMedCrossRefGoogle Scholar
  98. Sperandeo, P., Lau, F.K., Carpentieri, A., De Castro, C., Molinaro, A., Deho, G., Silhavy, T.J., Polissi, A. Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J Bacteriol 190 (2008) 4460–4469.PubMedCrossRefGoogle Scholar
  99. Steeghs, L., Jennings, M.P., Poolman, J.T., van der Ley, P. Isolation and characterization of the Neisseria meningitidis lpxD-fabZ-lpxA gene cluster involved in lipid A biosynthesis. Gene 190 (1997) 263–270.PubMedCrossRefGoogle Scholar
  100. Stover, A.G., Da Silva Correia, J., Evans, J.T., Cluff, C.W., Elliott, M.W., Jeffery, E.W., Johnson, D.A., Lacy, M.J., Baldridge, J.R., Probst, P., Ulevitch, R.J., Persing, D.H., Hershberg, R.M. Structure–activity relationship of synthetic toll-like receptor 4 agonists. J Biol Chem 279 (2004) 4440–4449.PubMedCrossRefGoogle Scholar
  101. Suda, Y., Kim, Y.M., Ogawa, T., Yasui, N., Hasegawa, Y., Kashihara, W., Shimoyama, T., Aoyama, K., Nagata, K., Tamura, T., Kusumoto, S. Chemical structure and biological activity of a lipid A component from Helicobacter pylori strain 206. J Endotoxin Res 7 (2001) 95–104.PubMedGoogle Scholar
  102. Touze, T., Tran, A.X., Hankins, J.V., Mengin-Lecreulx, D., Trent, M.S. Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol Microbiol 67 (2008) 264–277.PubMedCrossRefGoogle Scholar
  103. Tran, A.X., Karbarz, M.J., Wang, X., Raetz, C.R.H., McGrath, S.C., Cotter, R.J., Trent, M.S. Periplasmic cleavage and modification of the 1-phosphate group of Helicobacter pylori lipid A. J Biol Chem 279 (2004) 55780–55791.PubMedCrossRefGoogle Scholar
  104. Trent, M.S., Ribeiro, A.A., Doerrler, W.T., Lin, S., Cotter, R.J., Raetz, C.R.H. Accumulation of a polyisoprene-linked amino sugar in polymyxin resistant mutants in Salmonella typhimurium and Escherichia coli: structural characterization and possible transfer to lipid A in the periplasm. J Biol Chem 276 (2001a) 43132–43144.PubMedCrossRefGoogle Scholar
  105. Trent, M.S., Ribeiro, A.A., Lin, S., Cotter, R.J., Raetz, C.R.H. An inner membrane enzyme in Salmonella typhimurium and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: Induction in polymyxin resistant mutants and role of a novel lipid-linked donor. J Biol Chem 276 (2001b) 43122–43131.PubMedCrossRefGoogle Scholar
  106. Triantafilou, M., Triantafilou, K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 23 (2002) 301–304.PubMedCrossRefGoogle Scholar
  107. Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D., Paulsen, I., Nelson, K.E., Nelson, W., Fouts, D.E., Levy, S., Knap, A.H., Lomas, M.W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y.H., Smith, H.O. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304 (2004) 66–74.PubMedCrossRefGoogle Scholar
  108. Wang, X., Karbarz, M.J., McGrath, S.C., Cotter, R.J., Raetz, C.R.H. MsbA transporter-dependent lipid A 1-dephosphorylation on the periplasmic surface of the inner membrane: topography of Francisella novicida LpxE expressed in Escherichia coli. J Biol Chem 279 (2004) 49470–49478.PubMedCrossRefGoogle Scholar
  109. Wang, X., McGrath, S.C., Cotter, R.J., Raetz, C.R. Expression cloning and periplasmic orientation of the Francisella novicida lipid A 4'-phosphatase LpxF. J Biol Chem 281 (2006a) 9321–9330.PubMedCrossRefGoogle Scholar
  110. Wang, X., Ribeiro, A.A., Guan, Z., Abraham, S.N., Raetz, C.R. Attenuated virulence of a Francisella mutant lacking the lipid A 4'-phosphatase. Proc Natl Acad Sci USA 104 (2007) 4136–4141.PubMedCrossRefGoogle Scholar
  111. Wang, X., Ribeiro, A.A., Guan, Z., McGrath, S.C., Cotter, R.J., Raetz, C.R. Structure and biosynthesis of free lipid A molecules that replace lipopolysaccharide in Francisella tularensis subsp. novicida. Biochemistry 45 (2006b) 14427–14440.PubMedCrossRefGoogle Scholar
  112. Wang, X., Ribeiro, A.A., Guan, Z., Raetz, C.R. Identification of undecaprenyl phosphate-beta-D-galactosamine in Francisella novicida and its function in lipid A modification. Biochemistry 48 (2009) 1162–1172.PubMedCrossRefGoogle Scholar
  113. Ward, A., Reyes, C.L., Yu, J., Roth, C.B., Chang, G. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci USA 104 (2007) 19005–19010.PubMedCrossRefGoogle Scholar
  114. Whitfield, C., Amor, P.A., Koplin, R. Modulation of the surface architecture of Gram-negative bacteria by the action of surface polymer:lipid A-core ligase and by determinants of polymer chain length. Mol Microbiol 23 (1997) 629–638.PubMedCrossRefGoogle Scholar
  115. Wilkinson, S.G. Bacterial lipopolysaccharides—themes and variations. Prog Lipid Res 35 (1996) 283–343.PubMedCrossRefGoogle Scholar
  116. Williams, A.H., Raetz, C.R. Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Proc Natl Acad Sci USA 104 (2007) 13543–13550.PubMedCrossRefGoogle Scholar
  117. Winfield, M.D., Groisman, E.A. Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Proc Natl Acad Sci USA 101 (2004) 17162–17167.PubMedCrossRefGoogle Scholar
  118. Wosten, M.M., Kox, L.F., Chamnongpol, S., Soncini, F.C., Groisman, E.A. A signal transduction system that responds to extracellular iron. Cell 103 (2000) 113–125.PubMedCrossRefGoogle Scholar
  119. Wu, T., McCandlish, A.C., Gronenberg, L.S., Chng, S.S., Silhavy, T.J., Kahne, D. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc Natl Acad Sci USA 103 (2006) 11754–11759.PubMedCrossRefGoogle Scholar
  120. Yamamoto, M., Sato, S., Hemmi, H., Sanjo, H., Uematsu, S., Kaisho, T., Hoshino, K., Takeuchi, O., Kobayashi, M., Fujita, T., Takeda, K., Akira, S. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420 (2002) 324–329.PubMedCrossRefGoogle Scholar
  121. Yamamoto, M., Sato, S., Hemmi, H., Uematsu, S., Hoshino, K., Kaisho, T., Takeuchi, O., Takeda, K., Akira, S. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4 (2003) 1144–1150.PubMedCrossRefGoogle Scholar
  122. Yan, A., Guan, Z., Raetz, C.R. An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli. J Biol Chem 282 (2007) 36077–36089.PubMedCrossRefGoogle Scholar
  123. Zhang, F.X., Kirschning, C.J., Mancinelli, R., Xu, X.P., Jin, Y., Faure, E., Mantovani, A., Rothe, M., Muzio, M., Arditi, M. Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem 274 (1999) 7611–7614.PubMedCrossRefGoogle Scholar
  124. Zhou, Z., Ribeiro, A.A., Lin, S., Cotter, R.J., Miller, S.I., Raetz, C.R. Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-L-arabinose, and phosphoethanolamine incorporation. J Biol Chem 276 (2001) 43111–43121.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Department of BiochemistryKing’s College LondonLondonUK

Personalised recommendations