A Handbook of Transcription Factors pp 279-295

Part of the Subcellular Biochemistry book series (SCBI, volume 52) | Cite as

Large-Scale Nuclear Architecture and Transcriptional Control

  • Juan M. Vaquerizas
  • Asifa Akhtar
  • Nicholas M. Luscombe


Transcriptional regulation is one the most basic mechanisms for controlling gene expression. Over the past few years, much research has been devoted to understanding the interplay between transcription factors, histone modifications and associated enzymes required to achieve this control. However, it is becoming increasingly apparent that the three-dimensional conformation of chromatin in the interphase nucleus also plays a critical role in regulating transcription. Chromatin localisation in the nucleus is highly organised, and early studies described strong interactions between chromatin and sub-nuclear components. Single-gene studies have shed light on how chromosomal architecture affects gene expression. Lately, this has been complemented by whole-genome studies that have determined the global chromatin conformation of living cells in interphase. These studies have greatly expanded our understanding of nuclear architecture and its interplay with different physiological processes. Despite these advances, however, most of the mechanisms used to impose the three-dimensional chromatin structure remain unknown. Here, we summarise the different levels of chromatin organisation in the nucleus and discuss current efforts into characterising the mechanisms that govern it.


Chromatin Chromosomal organisation Nuclear architecture Transcription factor Transcriptional regulation 


  1. 1.
    Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356PubMedCrossRefGoogle Scholar
  2. 2.
    Lemon B, Tjian R (2000) Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 14(20):2551–2569PubMedCrossRefGoogle Scholar
  3. 3.
    Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301PubMedCrossRefGoogle Scholar
  4. 4.
    Lanctot C, et al. (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8(2):104–115PubMedCrossRefGoogle Scholar
  5. 5.
    Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128(4):787–800PubMedCrossRefGoogle Scholar
  6. 6.
    Dietzel S, et al. (1998) Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosome Res 6(1):25–33PubMedCrossRefGoogle Scholar
  7. 7.
    Zink D, et al. (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102(2):241–251PubMedCrossRefGoogle Scholar
  8. 8.
    Duan Z, et al. (2010) A three-dimensional model of the yeast genome. Nature 465(7296):363–367PubMedCrossRefGoogle Scholar
  9. 9.
    Fullwood MJ, et al. (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462(7269):58–64PubMedCrossRefGoogle Scholar
  10. 10.
    Lieberman-Aiden E, et al. (2009) Comprehensive mapping of long–range interactions reveals folding principles of the human genome. Science 326(5950):289–293PubMedCrossRefGoogle Scholar
  11. 11.
    Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447(7143):413–417PubMedCrossRefGoogle Scholar
  12. 12.
    Hübner MR, Spector DL (2010) Chromatin dynamics. Annu Rev Biophys 39:471–489PubMedCrossRefGoogle Scholar
  13. 13.
    Holmquist GP (1992) Chromosome bands, their chromatin flavors, and their functional features. Am J Hum Genet 51(1):17–37PubMedGoogle Scholar
  14. 14.
    Zorn C, et al. (1979) Unscheduled DNA synthesis after partial UV irradiation of the cell nucleus. Distribution in interphase and metaphase. Exp Cell Res 124(1):111–119PubMedCrossRefGoogle Scholar
  15. 15.
    Speicher MR, Carter NP (2005) The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6(10):782–792PubMedCrossRefGoogle Scholar
  16. 16.
    Dekker J (2008) Gene regulation in the third dimension. Science 319(5871):1793–1794PubMedCrossRefGoogle Scholar
  17. 17.
    Naumova N, Dekker J (2010) Integrating one-dimensional and three-dimensional maps of genomes. J Cell Sci 123(Pt 12):1979–1988PubMedCrossRefGoogle Scholar
  18. 18.
    Rodley CDM, et al. (2009) Global identification of yeast chromosome interactions using Genome conformation capture. Fungal Genet Biol 46(11):879–886PubMedCrossRefGoogle Scholar
  19. 19.
    Croft JA, et al. (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145(6):1119–1131PubMedCrossRefGoogle Scholar
  20. 20.
    Akhtar A, Gasser SM (2007) The nuclear envelope and transcriptional control. Nat Rev Genet 8(7):507–517PubMedCrossRefGoogle Scholar
  21. 21.
    Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4(5):e138PubMedCrossRefGoogle Scholar
  22. 22.
    Simonis M, et al. (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38(11):1348–1354PubMedCrossRefGoogle Scholar
  23. 23.
    Volpi EV, et al. (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113(Pt 9):1565–1576PubMedGoogle Scholar
  24. 24.
    Chambeyron S, Bickmore WA (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18(10):1119–1130PubMedCrossRefGoogle Scholar
  25. 25.
    Morey C, et al. (2007) Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development 134(5):909–919PubMedCrossRefGoogle Scholar
  26. 26.
    Ryba T, et al. (2010) Evolutionarily conserved replication timing profiles predict long–range chromatin interactions and distinguish closely related cell types. Genome Res 20(6):761–770PubMedCrossRefGoogle Scholar
  27. 27.
    Sutherland H, Bickmore WA (2009) Transcription factories: gene expression in unions? Nat Rev Genet 10(7):457–466PubMedCrossRefGoogle Scholar
  28. 28.
    Iborra FJ, et al. (1996) Active RNA polymerases are localized within discrete transcription “factories” in human nuclei. J Cell Sci 109(Pt 6):1427–1436PubMedGoogle Scholar
  29. 29.
    Phatnani HP, Greenleaf AL (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20(21):2922–2936PubMedCrossRefGoogle Scholar
  30. 30.
    Chubb JR, et al. (2006) Transcriptional pulsing of a developmental gene. Curr Biol 16(10):1018–1025PubMedCrossRefGoogle Scholar
  31. 31.
    Darzacq X, et al. (2007) In vivo dynamics of RNA polymerase II transcription. Nat Struct Mol Biol 14(9):796–806PubMedCrossRefGoogle Scholar
  32. 32.
    Jackson DA, et al. (1998) Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol Biol Cell 9(6):1523–1536PubMedGoogle Scholar
  33. 33.
    Ragoczy T, et al. (2006) The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev 20(11):1447–1457PubMedCrossRefGoogle Scholar
  34. 34.
    Brown JM, et al. (2006) Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol 172(2):177–187PubMedCrossRefGoogle Scholar
  35. 35.
    Osborne CS, et al. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36(10):1065–1071PubMedCrossRefGoogle Scholar
  36. 36.
    Mahy NL, Perry PE, Bickmore WA (2002) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159(5):753–763PubMedCrossRefGoogle Scholar
  37. 37.
    de Laat W, Grosveld F (2003) Spatial organization of gene expression: the active chromatin hub. Chromosome Res 11(5):447–459PubMedCrossRefGoogle Scholar
  38. 38.
    Sproul D, Gilbert N, Bickmore WA (2005) The role of chromatin structure in regulating the expression of clustered genes. Nat Rev Genet 6(10):775–781PubMedCrossRefGoogle Scholar
  39. 39.
    Hurst LD, Pál C, Lercher MJ (2004) The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 5(4):299–310PubMedCrossRefGoogle Scholar
  40. 40.
    Spitz F, Gonzalez F, Duboule D (2003) A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113(3):405–417PubMedCrossRefGoogle Scholar
  41. 41.
    Stamatoyannopoulos G (2005) Control of globin gene expression during development and erythroid differentiation. Exp Hematol 33(3):259–271PubMedCrossRefGoogle Scholar
  42. 42.
    Janga SC, Collado-Vides J, Babu MM (2008) Transcriptional regulation constrains the organization of genes on eukaryotic chromosomes. Proc Natl Acad Sci USA 105(41):15761–15766PubMedCrossRefGoogle Scholar
  43. 43.
    Fujiwara T, et al. (2009) Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell 36(4):667–681PubMedCrossRefGoogle Scholar
  44. 44.
    Hallikas O, et al. (2006) Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell 124(1):47–59PubMedCrossRefGoogle Scholar
  45. 45.
    Lin C, et al. (2007) Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 3(6):e87PubMedCrossRefGoogle Scholar
  46. 46.
    Liu Y, et al. (2008) The genome landscape of ERalpha- and ERbeta-binding DNA regions. Proc Natl Acad Sci USA 105(7):2604–2609PubMedCrossRefGoogle Scholar
  47. 47.
    Love JJ, et al. (1995) Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376(6543):791–795PubMedCrossRefGoogle Scholar
  48. 48.
    Sjøttem E, Andersen C, Johansen T (1997) Structural and functional analyses of DNA bending induced by Sp1 family transcription factors. J Mol Biol 267(3):490–504PubMedCrossRefGoogle Scholar
  49. 49.
    Su W, et al. (1991) DNA looping between sites for transcriptional activation: self-association of DNA-bound Sp1. Genes Dev 5(5):820–826PubMedCrossRefGoogle Scholar
  50. 50.
    Lomvardas S, et al. (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126(2):403–413PubMedCrossRefGoogle Scholar
  51. 51.
    Spilianakis CG, et al. (2005) Interchromosomal associations between alternatively expressed loci. Nature 435(7042):637–645PubMedCrossRefGoogle Scholar
  52. 52.
    Tan-Wong SM, Wijayatilake HD, Proudfoot NJ (2009) Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev 23(22):2610–2624PubMedCrossRefGoogle Scholar
  53. 53.
    Straub T, Becker PB (2007) Dosage compensation: the beginning and end of generalization. Nat Rev Genet 8(1):47–57PubMedCrossRefGoogle Scholar
  54. 54.
    Dietzel S, et al. (1999) The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp Cell Res 252(2):363–375PubMedCrossRefGoogle Scholar
  55. 55.
    Chuang C, et al. (2006) Long-range directional movement of an interphase chromosome site. Curr Biol 16(8):825–831PubMedCrossRefGoogle Scholar
  56. 56.
    Schoenfelder S, et al. (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 42(1):53–61PubMedCrossRefGoogle Scholar
  57. 57.
    Kagey MH, et al. (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467(7314):430–435PubMedCrossRefGoogle Scholar
  58. 58.
    Shopland LS, et al. (2003) Clustering of multiple specific genes and gene-rich R-bands around SC-35 domains: evidence for local euchromatic neighborhoods. J Cell Biol 162(6):981–990PubMedCrossRefGoogle Scholar
  59. 59.
    Kind J, van Steensel B (2010) Genome–nuclear lamina interactions and gene regulation. Curr Opin Cell Biol 22(3):320–325PubMedCrossRefGoogle Scholar
  60. 60.
    Strambio-De-Castillia C, Niepel M, Rout MP (2010) The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11(7):490–501PubMedCrossRefGoogle Scholar
  61. 61.
    Brenner S (1953) The chromatic nuclear membrane. Exp Cell Res 5(1):257–260PubMedCrossRefGoogle Scholar
  62. 62.
    Guelen L, et al. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197):948–951PubMedCrossRefGoogle Scholar
  63. 63.
    Pickersgill H, et al. (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38(9):1005–1014PubMedCrossRefGoogle Scholar
  64. 64.
    Casolari JM, et al. (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117(4):427–439PubMedCrossRefGoogle Scholar
  65. 65.
    Mendjan S, et al. (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21(6):811–823PubMedCrossRefGoogle Scholar
  66. 66.
    Vaquerizas JM, et al. (2010) Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet 6(2):e1000846PubMedCrossRefGoogle Scholar
  67. 67.
    Kind J, et al. (2008) Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. Cell 133(5):813–828PubMedCrossRefGoogle Scholar
  68. 68.
    Krull S, et al. (2010) Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J 29(10):1659–1673PubMedCrossRefGoogle Scholar
  69. 69.
    Capelson M, et al. (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140(3):372–383PubMedCrossRefGoogle Scholar
  70. 70.
    Kalverda B, et al. (2010) Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140(3):360–371PubMedCrossRefGoogle Scholar
  71. 71.
    Rabut G, Doye V, Ellenberg J (2004) Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 6(11):1114–1121PubMedCrossRefGoogle Scholar
  72. 72.
    Blobel G (1985) Gene gating: a hypothesis. Proc Natl Acad Sci USA 82(24):8527–8529PubMedCrossRefGoogle Scholar
  73. 73.
    Brown CR, et al. (2008a) Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev 22(5):627–639PubMedCrossRefGoogle Scholar
  74. 74.
    Brown JM, et al. (2008b) Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol 182(6):1083–1097PubMedCrossRefGoogle Scholar
  75. 75.
    Karolchik D, et al. (2008) The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res 36(Database issue):D773–9Google Scholar
  76. 76.
    Solovei I, et al. (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137(2):356–368PubMedCrossRefGoogle Scholar
  77. 77.
    Chaumeil J, et al. (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20(16):2223–2237PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Juan M. Vaquerizas
    • 1
  • Asifa Akhtar
    • 2
  • Nicholas M. Luscombe
    • 1
    • 3
    • 4
  1. 1.EMBL-European Bioinformatics InstituteCambridgeUK
  2. 2.Laboratory of Chromatin RegulationMax Planck Institute of ImmunobiologyFreiburgGermany
  3. 3.Genome Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
  4. 4.EMBL-Heidelberg Genome Biology UnitHeidelbergGermany

Personalised recommendations