Inhibitors of Innate Immunity from Vaccinia Virus

Conference paper

Abstract

Vaccinia virus (VACV) is an enigma, for it is the only vaccine to have eradicated a human disease, smallpox, and yet its origin and natural host remain unknown. After the eradication of smallpox, VACV has continued to be studied intensively because of the potential use of recombinant VACVs as vaccines against other infectious diseases, and because it is an excellent model for studying virus-host interactions. This short article considers some of the strategies used by VACV to suppress the host innate immune response to infection. These strategies include proteins that are secreted from infected cells to bind complement factors, cytokines, chemokines or interferons, and intracellular proteins that can synthesize steroid hormones, or block apoptosis or innate signalling pathways leading to production of inflammatory mediators.

Keywords

Synthesize Steroid Hormone Surface Groove Smallpox Vaccine Myxoma Virus Innate Immune Signalling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author is most grateful to the conference organisers for the kind invitation to visit Israel and attend the 46th Oholo Conference. The work in the author’s laboratory has been supported by grants from the Wellcome Trust, the Medical Research Council of UK. GLS is a Wellcome Principal Research Fellow.

References

  1. Aguado, B., Selmes, I. P. & Smith, G. L. (1992) Nucleotide sequence of 21.8 kbp of variola major virus strain Harvey and comparison with vaccinia virus. J Gen Virol, 73, 2887–902.PubMedCrossRefGoogle Scholar
  2. Alcami, A. & Smith, G. L. (1992) A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell, 71, 153–67.PubMedCrossRefGoogle Scholar
  3. Alcami, A. & Smith, G. L. (1996) A mechanism for the inhibition of fever by a virus. Proc Natl Acad Sci USA, 93, 11029–34.PubMedCrossRefGoogle Scholar
  4. Aoyagi, M., Zhai, D., Jin, C., Aleshin, A. E., Stec, B., Reed, J. C. & Liddington, R. C. (2007) Vaccinia virus N1L protein resembles a B cell lymphoma-2 (Bcl-2) family protein. Protein Sci, 16, 118–24.PubMedCrossRefGoogle Scholar
  5. Bartlett, N., Symons, J. A., Tscharke, D. C. & Smith, G. L. (2002) The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol, 83, 1965–76.PubMedGoogle Scholar
  6. Blanchard, T. J., Alcami, A., Andrea, P. & Smith, G. L. (1998) Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol, 79, 1159–67.PubMedGoogle Scholar
  7. Chen, R. A., Jacobs, N. & Smith, G. L. (2006) Vaccinia virus strain Western Reserve protein B14 is an intracellular virulence factor. J Gen Virol, 87, 1451–8.PubMedCrossRefGoogle Scholar
  8. Chen, R. A., Ryzhakov, G., Cooray, S., Randow, F. & Smith, G. L. (2008) Inhibition of IkappaB kinase by vaccinia virus virulence factor B14. PLoS Pathog, 4, e22.PubMedCrossRefGoogle Scholar
  9. Clark, R. H., Kenyon, J. C., Bartlett, N. W., Tscharke, D. C. & Smith, G. L. (2006) Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. J Gen Virol, 87, 29–38.PubMedCrossRefGoogle Scholar
  10. Cooray, S., Bahar, M. W., Abrescia, N. G., Mcvey, C. E., Bartlett, N. W., Chen, R. A., Stuart, D. I., Grimes, J. M. & Smith, G. L. (2007) Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. J Gen Virol, 88, 1656–66.PubMedCrossRefGoogle Scholar
  11. Diperna, G., Stack, J., Bowie, A. G., Boyd, A., Kotwal, G., Zhang, Z., Arvikar, S., Latz, E., Fitzgerald, K. A. & Marshall, W. L. (2004) Poxvirus protein N1L targets the I-kappaB kinase complex, inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors, and inhibits NF-kappaB and IRF3 signaling by toll-like receptors. J Biol Chem, 279, 36570–8.PubMedCrossRefGoogle Scholar
  12. Downie, A. W. (1939) Immunological relationship of the virus of spontaneous cowpox to vaccinia virus. Br. J. Exp. Pathol., 20, 158–76.Google Scholar
  13. Esposito, J. J., Sammons, S. A., Frace, A. M., Osborne, J. D., Olsen-Rasmussen, M., Zhang, M., Govil, D., Damon, I. K., Kline, R., Laker, M., Li, Y., Smith, G. L., Meyer, H., Leduc, J. W. & Wohlhueter, R. M. (2006) Genome sequence diversity and clues to the evolution of variola (smallpox) virus. Science, 313, 807–12.PubMedCrossRefGoogle Scholar
  14. Fenner, F., Anderson, D. A., Arita, I., Jezek, Z. & Ladnyi, I. D. (1988) Smallpox and Its Eradication, World Health Organisation, Geneva.Google Scholar
  15. Goebel, S. J., Johnson, G. P., Perkus, M. E., Davis, S. W., Winslow, J. P. & Paoletti, E. (1990) The complete DNA sequence of vaccinia virus. Virology, 179, 247–66, 517–63.PubMedCrossRefGoogle Scholar
  16. Graham, S. C., Bahar, M. W., Cooray, S., Chen, R. A. J., Whalen, D. M., Abrescia, N. G. A., Alderton, D., Owens, R. J., Stuart, D. I., Smith, G. L. & Grimes, J. M. (2008) Vaccinia virus proteins A52 and B14 share a Bcl-2-like fold but have evolved to inhibit NF-kappa B rather than apoptosis. Plos Pathogens, 4, e100128.Google Scholar
  17. Hashizume, S., Yoshizawa, H., Morita, M. & Suzuki, K. (1985) Properties of attenuated mutant of vaccinia virus, LC16m8, derived from Lister strain. In Quinnan, G. V. (ed.), Vaccinia viruses as vectors for vaccine antigens. Elsevier, New York.Google Scholar
  18. Jenner, E. (1798) An Enquiry into the Causes and Effects of Variolae Vaccinae, a Disease Discovered in some Western Countries of England, particularly Gloucestershire, and known by the Name of Cow Pox., London, Reprinted by Cassell, 1896.Google Scholar
  19. Kalverda, A. P., Thompson, G. S., Vogel, A., Schroder, M., Bowie, A. G., Khan, A. R. & Homans, S. W. (2009) Poxvirus K7 protein adopts a Bcl-2 fold: biochemical mapping of its interactions with human DEAD box RNA helicase DDX3. J Mol Biol, 385, 843–53.PubMedCrossRefGoogle Scholar
  20. Kotwal, G. J., Hugin, A. W. & Moss, B. (1989) Mapping and insertional mutagenesis of a vaccinia virus gene encoding a 13,800-Da secreted protein. Virology, 171, 579–87.PubMedCrossRefGoogle Scholar
  21. Kotwal, G. J. & Moss, B. (1988) Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology, 167, 524–37.PubMedGoogle Scholar
  22. Kvansakul, M., Yang, H., Fairlie, W. D., Czabotar, P. E., Fischer, S. F., Perugini, M. A., Huang, D. C. & Colman, P. M. (2008) Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ, 15, 1564–71.PubMedCrossRefGoogle Scholar
  23. Lane, J. M., Ruben, F. L., Neff, J. M. & Millar, J. D. (1969) Complications of smallpox vaccination, 1968. National surveillance in the United States. N Engl J Med, 281, 1201–8.PubMedCrossRefGoogle Scholar
  24. Mackett, M. & Archard, L. C. (1979) Conservation and variation in Orthopoxvirus genome structure. J Gen Virol, 45, 683–701.PubMedCrossRefGoogle Scholar
  25. Mackett, M., Smith, G. L. & Moss, B. (1982) Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci USA, 79, 7415–9.PubMedCrossRefGoogle Scholar
  26. Moore, J. B. & Smith, G. L. (1992) Steroid hormone synthesis by a vaccinia enzyme: a new type of virus virulence factor. EMBO J, 11, 3490.PubMedGoogle Scholar
  27. Moss, B. (2007) Poxviridae: the viruses and their replicaton. In Knipe, D. M. (ed.), Fields virology. 5th ed., Lippincott Williams & Wilkins, Philadelphia, PA.Google Scholar
  28. Moss, B., Winters, E. & Cooper, J. A. (1981) Deletion of a 9,000-base-pair segment of the vaccinia virus genome that encodes nonessential polypeptides. J Virol, 40, 387–95.PubMedGoogle Scholar
  29. Panicali, D., Davis, S. W., Mercer, S. R. & Paoletti, E. (1981) Two major DNA variants present in serially propagated stocks of the WR strain of vaccinia virus. J Virol, 37, 1000–10.PubMedGoogle Scholar
  30. Panicali, D., Davis, S. W., Weinberg, R. L. & Paoletti, E. (1983) Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proc Natl Acad Sci USA, 80, 5364–8.PubMedCrossRefGoogle Scholar
  31. Panicali, D. & Paoletti, E. (1982) Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc Natl Acad Sci USA, 79, 4927–31.PubMedCrossRefGoogle Scholar
  32. Perkus, M. E., Piccini, A., lipinskas, B. R. & Paoletti, E. (1985) Recombinant vaccinia virus: immunization against multiple pathogens. Science, 229, 981–4.PubMedCrossRefGoogle Scholar
  33. Reading, P. C., Moore, J. B. & Smith, G. L. (2003) Steroid hormone synthesis by vaccinia virus suppresses the inflammatory response to infection. J. Exp. Med., 197, 1269–78.PubMedCrossRefGoogle Scholar
  34. Seet, B. T., Johnston, J. B., Brunetti, C. R., Barrett, J. W., Everett, H., Cameron, C., Sypula, J., Nazarian, S. H., Lucas, A. & Mcfadden, G. (2003) Poxviruses and immune evasion. Annu Rev Immunol, 21, 377–423.PubMedCrossRefGoogle Scholar
  35. Smith, G. L. (1999) Vaccinia virus immune evasion. Immunol. Lett, 65, 55–62.PubMedCrossRefGoogle Scholar
  36. Smith, G. L. & Chan, Y. S. (1991) Two vaccinia virus proteins structurally related to the interleukin-1 receptor and the immunoglobulin superfamily. J Gen Virol, 72, 511–8.PubMedCrossRefGoogle Scholar
  37. Smith, G. L., Chan, Y. S. & Howard, S. T. (1991) Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. J Gen Virol, 72, 1349–76.PubMedCrossRefGoogle Scholar
  38. Smith, G. L., Mackett, M. & Moss, B. (1983a) Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. Nature, 302, 490–5.PubMedCrossRefGoogle Scholar
  39. Smith, G. L. & Moss, B. (1983) Infectious poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA. Gene, 25, 21–8.PubMedCrossRefGoogle Scholar
  40. Smith, G. L., Murphy, B. R. & Moss, B. (1983b) Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. Proc Natl Acad Sci USA, 80, 7155–9.PubMedCrossRefGoogle Scholar
  41. Spriggs, M. K., Hruby, D. E., Maliszewski, C. R., Pickup, D. J., Sims, J. E., Buller, R. M. & Vanslyke, J. (1992) Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell, 71, 145–52.PubMedCrossRefGoogle Scholar
  42. Sroller, V., Kutinova, L., Nemeckova, S., Simonova, V. & Vonka, V. (1998) Effect of 3-beta-hydroxysteroid dehydrogenase gene deletion on virulence and immunogenicity of different vaccinia viruses and their recombinants. Arch Virol, 143, 1311–20.PubMedCrossRefGoogle Scholar
  43. Staib, C., Kisling, S., Erfle, V. & Sutter, G. (2005) Inactivation of the viral interleukin 1beta receptor improves CD8+ T-cell memory responses elicited upon immunization with modified vaccinia virus Ankara. J Gen Virol, 86, 1997–2006.PubMedCrossRefGoogle Scholar
  44. Stickl, H. & Hochstein-Mintzel, V. (1971) [Intracutaneous smallpox vaccination with a weak pathogenic vaccinia virus (“MVA virus”)]. Munch Med Wochenschr, 113, 1149–53.PubMedGoogle Scholar
  45. Tscharke, D. C., Reading, P. C. & Smith, G. L. (2002) Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol, 83, 1977–86.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Virology, Faculty of MedicineImperial College LondonLondonEngland

Personalised recommendations