Designing and Building an Agent-Based Model

Chapter

Abstract

This chapter discusses the process of designing and building an ­agent-based model, and suggests a set of steps to follow when using agent-based modelling as a research method. It starts with defining agent-based modelling and discusses its main concepts, and then it discusses how to design agents using different architectures. The chapter also suggests a standardized process consisting of a sequence of steps to develop agent-based models for social science research, and provides examples to illustrate this process.

Recommended Reading

  1. Edmonds, B., & Scott, M. (2005). From KISS to KIDS – An ‘anti-simplistic’ modelling approach. In P. Davidson, B. Logan, & K. Takadema (Eds.), Multi-agent and multi-agent-based simulation. MABS, 2004. New York/Berlin: Springer.Google Scholar
  2. Epstein, J. M. (2006a). Generative social science. Princeton: Princeton University Press.Google Scholar
  3. Epstein, J. M. (2008). Why model? Journal of Artificial Societies and Social Simulation, 11(4), 12. Available at: http://jasss.soc.surrey.ac.uk/11/4/12.html
  4. Gilbert, N., & Troitzsch, K. G. (2005). Simulation for the social scientist. Milton Keynes: Open University Press.Google Scholar
  5. Gilbert, N. (2008a). Agent-based models. London: Sage.Google Scholar
  6. Moss, S. (2008). Alternative approaches to the empirical validation of agent-based models. Journal of Artificial Societies and Social Simulation, 11(1), 5. Available at: http://jasss.soc.surrey.ac.uk/11/1/5.html

References

  1. Acerbi, A., & Parisi, D. (2006). Cultural transmission between and within generations. Journal of Artificial Societies and Social Simulation 9(1). Available at: http://jasss.soc.surrey.ac.uk/9/1/9.html
  2. Allport, G. W. (1954). The nature of prejudice. Cambridge, MA: Addison-Wesley.Google Scholar
  3. Balci, O. (1994). Validation, verification, and testing techniques throughout the life cycle of a simulation study. Annals of Operations Research, 53, 121–173.CrossRefGoogle Scholar
  4. Crooks, A. T., & Castle, C. (2012). The integration of agent-based modelling and geographical information for geospatial simulation. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 219–252). Dordrecht: Springer.Google Scholar
  5. Crooks, A. T., & Heppenstall, A. J. (2012). Introduction to agent-based modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 85–105). Dordrecht: Springer.Google Scholar
  6. Epstein, J. M. (2006b). Generative social science. Princeton: Princeton University Press.Google Scholar
  7. Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: social science from the bottom up. Cambridge, MA: MIT Press.Google Scholar
  8. Friedman-Hill, E. (2003). Jesss in action: Rule-based systems in Java. Greenwich: Maning.Google Scholar
  9. Garson, D. G. (1998). Neural networks: An introductory guide for social scientists. London: Sage Publications.Google Scholar
  10. Gilbert, N. (2008b). Agent-based models. London: Sage.Google Scholar
  11. Gilbert, N., Pyka, A., Ahrweiler, P. (2001). Innovation networks: A simulation approach. Journal of Artificial Societies and Social Simulation, 4(3). Available at: http://jasss.soc.surrey.ac.uk/4/3/8.html
  12. Gilbert, N. et al. (2006). Emerging artificial societies through learning. Journal of Artificial Societies and Social Simulation, 9(2). Available at: http://jasss.soc.surrey.ac.uk/9/2/9.html
  13. Hutchins, E., & Hazlehurst, B. (1995). How to invent a lexicon: The development of sharedsymbols in interaction. In N. Gilbert & R. Conte (Eds.), Artificial societies: The computer simulation of social life (pp. 157–189). London: UCL Press.Google Scholar
  14. Jost, J. T., Banaji, M. R., & Nosek, B. A. (2004). A decade of system justification theory: Accumulated evidence of conscious and unconscious bolstering of the status quo. Political Psychology, 25(6), 881–919.CrossRefGoogle Scholar
  15. Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. Artificial Intelligence, 33(1), 1–64.CrossRefGoogle Scholar
  16. Macy, M., & Willer, R. (2002). From factors to actors: Computational sociology and agent-based modeling. Annual Review of Sociology, 28, 143–166.CrossRefGoogle Scholar
  17. Massey, D. S., & Denton, N. A. (1988). The dimensions of residential segregation. Social Forces, 67(2), 281–315.Google Scholar
  18. Ngo, T. A., & See, L. M. (2012). Calibration and validation of agent-based models of land cover change. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 181–196). Dordrecht: Springer.Google Scholar
  19. Parry, H. R., & Bithnell, M. (2012). Large scale agent-based modelling: A review and guidelines for model scaling. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 525–542). Dordrecht: Springer.Google Scholar
  20. Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1, 143–186.CrossRefGoogle Scholar
  21. Scott, J. (2000). Social network analysis (2nd ed.). London: Sage.Google Scholar
  22. Sherif, M. (1966). In common predicament; social psychology of intergroup conflict and cooperation. Boston: Houghton Mifflin.Google Scholar
  23. Sidanius, J., Pratto, F., van Laar, C., & Levin, S. (2004). Social dominance theory: Its agenda and method. Political Psychology, 25(6), 845–880.CrossRefGoogle Scholar
  24. Sun, R. (2006). The CLARION cognitive architecture: Extending cognitive modeling to social simulation. In R. Sun (Ed.), Cognition and multi-agent interaction: From cognitive modeling to social simulation (pp. 79–99). New York: Cambridge University Press.Google Scholar
  25. Tajfel, H. (1981). Human groups and social categories: Studies in social psychology. Cambridge: Cambridge University Press.Google Scholar
  26. Taatgen, N., Lbiere, C., & Anderson, J. (2006). Modeling paradigms in ACT-R. In R. Sun (Ed.), Cognition and multi-agent interaction: From cognitive modeling to social simulation (pp. 28–51). Cambridge: Cambridge University Press.Google Scholar
  27. Terna, P. (1997). A laboratory for agent based computational economics. In R. Conte, R. Hegselmann, & P. Terna (Eds.), Simulating social phenomena (pp. 77–88). Berlin: Springer.Google Scholar
  28. Wilensky, U. (1997a). NetLogo traffic basic model. Evanston: Center for Connected Learning and Computer-Based Modeling, Northwestern University. Available at: http://ccl.northwestern.edu/netlogo/models/TrafficBasic
  29. Wilensky, U. (1997b). NetLogo segregation model. Evanston: Center for Connected Learning and Computer-Based Modeling, Northwestern University. Available at: http://ccl.northwestern.edu/netlogo/models/Segregation
  30. Wilensky, U. (1999). NetLogo. Evanston: Center for Connected Learning and Computer- based Modeling, Northwestern University.Google Scholar
  31. Wray, R. E., & Jones, R. M. (2006). Considering Soar as an agent architecture. In R. Sun (Ed.), Cognition and multi-agent interaction: From cognitive modeling to social simulation (pp. 53–78). New York: Cambridge University Press.Google Scholar
  32. Ye, M., & Carley, K. M. (1995). Radar-Soar: Towards an artificial organization composed of intelligent agents. Journal of Mathematical Sociology, 20(2–3), 219–246.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Social Science Computing, Faculty of Economics and Political ScienceCairo UniversityCairoEgypt
  2. 2.CRESS, Department of SociologyUniversity of SurreyGuildfordUK

Personalised recommendations