Advertisement

Introduction to Agent-Based Modelling

  • Andrew T. Crooks
  • Alison J. Heppenstall
Chapter

Abstract

The application of agent-based modelling (ABM) to simulating dynamics within geographical systems has seen a considerable increase over the last decade. ABM allows the disaggregation of systems into individual components that can potentially have their own characteristics and rule sets. This is a powerful paradigm that can be exploited through simulation to further our knowledge of the workings of geographical systems. We present in this chapter an overview of ABM; the main features of an agent-based model are given, along with a discussion of what constitutes an agent-based model. The distinction between cellular automata (CA), microsimulation (MSM) and agent-based models are discussed along with the advantages and limitations of ABM for modelling geographical systems. We conclude with a brief discussion of important areas for further research.

Keywords

Geographical Information System Cellular Automaton Cellular Automaton Agent Interaction Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdou, M., Hamill, L., & Gilbert, N. (2012). Designing and building an agent-based model. In A. J. Heppenstall, A.T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 141–166). Dordrecht: Springer.Google Scholar
  2. Alam, S. J., Geller, A., & Tsvetovat, M. (2012). Networks in agent-based social simulation. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 199–216). Dordrecht: Springer.Google Scholar
  3. Athale, C. A., & Deisboeck, T.S. (2006). The effects of EGF-receptor density on multi-scale tumour growth patterns. Journal of Theoretical Biology, 238(4), 771–779.CrossRefGoogle Scholar
  4. Axelrod, R. (1997). The complexity of cooperation: Agent-based models of competition and collaboration. Princeton: Princeton University Press.Google Scholar
  5. Axelrod, R. (2006). Agent-based modelling as a bridge between disciplines. In L. Tesfatsion & K. L. Judd (Eds.), Handbook of computational economics: Agent-based computational economics (Vol. 2, pp. 1598–1583). Amsterdam: North-Holland.Google Scholar
  6. Axelrod, R. (2007). Simulation in the social sciences. In J. P. Rennard (Ed.), Handbook of research on nature inspired computing for economy and management (pp. 90–100). Hershey: Idea Group.Google Scholar
  7. Axelrod, R., & Bennett, S. D. (1993). A landscape theory of aggregation. British Journal of Political Science, 23(2), 211–233.CrossRefGoogle Scholar
  8. Axtell, R. (1999). The emergence of firms in a population of agents: Local increasing returns, unstable nash equilibria, and power law size distributions, Working paper no. 3. Washington DC: Center on Social and Economic Dynamics (The Brookings Institute).Google Scholar
  9. Axtell, R. (2000). Why agents? On the varied motivations for agent computing in the social sciences, Working paper 17. Washington DC: Center on Social and Economic Dynamics (The Brookings Institute).Google Scholar
  10. Axtell, R., & Epstein, J. M. (1994), Agent-based modelling: Understanding our creations (pp. 28–32). The Bulletin of the Santa Fe Institute, Winter.Google Scholar
  11. Axtell, R., Epstein, J. M., Dean, J. S., Gumerman, G. J., Swedlund, A. C., Harburger, J., et al. (2002). Population growth and collapse in a multiagent model of the Kayenta Anasazi in long house valley. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 99(3), 7275–7279.CrossRefGoogle Scholar
  12. Bak, P., Paczuski, M., & Shubik, M. (1999). Price variations in a stock market with many agents, Discussion paper 1132. New Haven: Cowles Foundation, (Yale University). Available at http://cowles.econ.yale.edu/P/cd/d11a/d1132.pdf
  13. Balan, G. C., Cioffi-Revella, C., Luke, S., Pamait, L., & Paus, S. (2003). MASON: A Java multi agent simulation library. In C. M. Macal,, M. J. North & D. Sallach (Eds.) Proceedings of Agent 2003 Conference on Challenges in Social Simulation (pp. 49–64). Chicago: University of Chicago.Google Scholar
  14. Ballas, D., Clarke, G., & Wiemers, E. (2005). Building a dynamic spatial microsimulation model for Ireland. Population, Space and Place, 11(3), 157–172.CrossRefGoogle Scholar
  15. Barros, J. (2012). Exploring urban dynamics in Latin American cities using an agent-based modelling approach. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 571–589). Dordrecht: Springer.Google Scholar
  16. Batty, M. (1976). Urban modelling: Algorithms, Calibrations, Predictions. Cambridge: Cambridge University Press.Google Scholar
  17. Batty, M. (2007). Model cities. Town Planning Review, 78(2), 125–178.CrossRefGoogle Scholar
  18. Batty, M. (2012). A generic framework for computational spatial modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.) Agent-based models of geographical systems (pp. 19–50). Dordrecht: Springer.Google Scholar
  19. Batty, M., & Torrens, P. M. (2005). Modelling and prediction in a complex world. Futures, 37(7), 745–766.CrossRefGoogle Scholar
  20. Batty, M., Desyllas, J., & Duxbury, E. (2003). Safety in numbers? Modelling crowds and designing control for the Notting Hill Carnival. Urban Studies, 40(8), 1573–1590.CrossRefGoogle Scholar
  21. Benenson, I., & Torrens, P. M. (2004). Geosimulation: Automata-based modelling of urban phenomena. London: Wiley.CrossRefGoogle Scholar
  22. Benenson, I., Omer, I., & Hatna, E. (2002). Entity-based modelling of urban residential dynamics: The case of Yaffo, Tel Aviv. Environment and Planning B, 29(4), 491–512.CrossRefGoogle Scholar
  23. Bernard, R. N. (1999). Using adaptive agent-based simulation models to assist planners in policy development: The case of rent control, Working paper 99-07-052. Santa Fe, NM: Santa Fe Institute.Google Scholar
  24. Beuck, U., Rieser, M., Strippgen, D., Balmer, M., & Nagel, K. (2008). Preliminary results of a multi-agent traffic simulation for Berlin. In S. Albeverio, D. Andrey, P. Giordano, & A. Vancheri (Eds.), The dynamics of complex urban systems: An interdisciplinary approach (pp. 75–94). New York: Springer Physica.CrossRefGoogle Scholar
  25. Birkin, M., & Wu, B. (2012). A review of microsimulation and hybrid agent-based approaches. In A. J. Heppenstall, A.T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 51–68). Dordrecht: Springer.Google Scholar
  26. Boman, M., & Holm, E. (2004). Multi-agent systems, time geography, and microsimulations. In M.-O. Olsson & G. Sjöstedt (Eds.), Systems approaches and their application (pp. 95–118). Norwell: Kluwer.Google Scholar
  27. Bonabeau, E. (2002). Agent-based modelling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 99(3), 7280–7287.CrossRefGoogle Scholar
  28. Brown, D. G. (2006). Agent-Based Models. In H. Geist (Ed.), The earth’s changing land: An encyclopaedia of land-use and land-cover change (pp. 7–13). Westport: Greenwood Publishing Group.Google Scholar
  29. Brown, D. G., Page, S. E., Riolo, R., Zellner, M., & Rand, W. (2005). Path dependence and the validation of agent-based spatial models of land use. International Journal of Geographical Information Science, 19(2), 153–174.CrossRefGoogle Scholar
  30. Casti, J. L. (1997). Would-be-worlds: How simulation is changing the frontiers of science. New York: Wiley.Google Scholar
  31. Cederman, L. E. (2001). Agent-based modelling in political science. The Political Methodologist, 10(1), 16–22.Google Scholar
  32. Cederman, L. E. (2004). Computational models of social systems. Available at http://www.cederman.ethz.ch/teaching/archive/compmodels/ss2004/slides/compmodels-20040330.pdf
  33. Couclelis, H. (2002). Modelling frameworks, paradigms, and approaches. In K. C. Clarke, B. E. Parks, & M. P. Crane (Eds.), Geographic information systems and environmental modelling (pp. 36–50). London: Prentice Hall.Google Scholar
  34. Crooks, A. T., & Castle, C. (2012). The integration of agent-based modelling and geographical information for geospatial simulation. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 219–252). Dordrecht: Springer.Google Scholar
  35. Crooks, A. T., Castle, C. J. E., & Batty, M. (2008). Key challenges in agent-based modelling for geo-spatial simulation. Computers, Environment and Urban Systems, 32(6), 417–430.CrossRefGoogle Scholar
  36. Crooks, A. T., Hudson-Smith, A., & Dearden, J. (2009). Agent street: An environment for exploring agent-based models in second life. Journal of Artificial Societies and Social Simulation, 12(4). Available at http://jasss.soc.surrey.ac.uk/12/4/10.html
  37. Emonet, T., Macal, C. M., North, M. J., Wickersham, C. E., & Cluzel, P. (2005). AgentCell: A digital single-cell assay for bacterial chemotaxis. Bioinfomatics, 21(11), 2714–2721.CrossRefGoogle Scholar
  38. Epstein, J. M. (1999). Agent-based computational models and generative social science. Complexity, 4(5), 41–60.CrossRefGoogle Scholar
  39. Epstein, J.M., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up. Cambridge: MIT Press.Google Scholar
  40. Evans A. J. (2012). Uncertainty and error. In A. J. Heppenstall, A.T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 309–346). Dordrecht: Springer.Google Scholar
  41. Franklin, S., & Graesser, A. (1996). Is it an agent, or just a program?: A taxonomy for autonomous agent. In Proceedings of the Third International Workshop on Agent Theories, Architectures, and Languages (pp. 21–35). Springer.Google Scholar
  42. Gilbert, N., & Terna, P. (2000). How to build and use agent-based models in social science. Mind and Society, 1(1), 57–72.CrossRefGoogle Scholar
  43. Grimm, V., & Railsback, S.F. (2012). Designing, formulating and communicating agent-based models. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 361–377). Dordrecht: Springer.Google Scholar
  44. Gwynne, S., Galea, E. R., Lawrence, P. J., & Filippidis, L. (2001). Modelling occupant interaction with fire conditions using the building EXODUS evacuation model. Fire Safety Journal, 36(4), 327–357.CrossRefGoogle Scholar
  45. Haklay, M., O’Sullivan, D., Thurstain-Goodwin, M., & Schelhorn, T. (2001). “So go downtown”: Simulating pedestrian movement in town centres. Environment and Planning B, 28(3), 343–359.CrossRefGoogle Scholar
  46. Harland, K., & Heppenstall, A.J. (2012). Using agent-based models for education planning: Is the UK education system agent-based. In A. J. Heppenstall, A.T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 481–497). Dordrecht: Springer.Google Scholar
  47. Heppenstall, A. J., Evans, A. J., & Birkin, M. H. (2006) Application of multi-agent systems to modelling a dynamic, locally interacting retail market. Journal of Artificial Societies and Social Simulation, 9(3). Available at http://jasss.soc.surrey.ac.uk/9/3/2.html
  48. Heppenstall, A. J., Evans, A. J., & Birkin, M. H. (2007). Genetic algorithm optimisation of a multi-agent system for simulating a retail market. Environment and Planning B, 34(6), 1051–1070.CrossRefGoogle Scholar
  49. Holland, J. H. (1995). Hidden order: How adaptation builds complexity. Reading: Addison-Wesley.Google Scholar
  50. Ilachinski, A. (1997). Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An artificial-life approach to land combat. Alexandria: Center for Naval Analyses.Google Scholar
  51. Iltanen, S. (2012). Cellular automata in urban spatial modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 69–84). Dordrecht: Springer.Google Scholar
  52. Jackson, J., Forest, B., & Sengupta, R. (2008). Agent-based simulation of urban residential dynamics and land rent change in a gentrifying area of Boston. Transactions in GIS, 12(4), 475–491.CrossRefGoogle Scholar
  53. Johnasson, A., & Kretz, T. (2012). Applied pedestrian modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 451–462). Dordrecht: Springer.Google Scholar
  54. Kennedy, B. (2012). Accounting for human behaviour in agent-based models. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 167–179). Dordrecht: Springer.Google Scholar
  55. Kohler, T.A., Kresl, J., Van Wes, Q., Carr, E., & Wilshusen, R.H. (2000). Be there then: A modeling approach to settlement determinants and spatial efficiency among late ancestral Pueblo populations of the Mesa Verde Region, U.S. Southwest. In T.A. Kohler & G. J. Gumerman (Eds.), Dynamics in human and primate societies: Agent-based modeling of social and spatial processes (pp. 145–178). Oxford: Oxford University Press.Google Scholar
  56. Kollman, K., Miller, J. H., & Page, S. E. (1992). Adaptive parties in spatial elections. American Political Science Review, 86(4), 929–937.CrossRefGoogle Scholar
  57. Kornhauser, D., Wilensky, U., & Rand, D. (2009). Design guidelines for agent based model visualization. Journal of Artificial Societies and Social Simulation, 12(2). Available at http://jasss.soc.surrey.ac.uk/12/2/1.html
  58. Kreft, J. U., Booth, G., & Wimpenny, W. T. (1998). BacSim, a simulator for individual based modelling of bacterial colony growth. Microbiology, 144(12), 3275–3287.CrossRefGoogle Scholar
  59. Landis, J., & Zhang, M. (1998). The second generation of the California urban futures model. Part 2: Specification and calibration results of the land-use change submodel. Environment and Planning B, 25(6), 795–824.CrossRefGoogle Scholar
  60. Law, A. M., & Kelton, D. (1991). Simulation modelling and analysis (2nd ed.). New York: McGraw-Hill.Google Scholar
  61. Lee, D. B. (1973). Requiem for large-scale models. Journal of the American Institute of Planners, 39, 163–178.CrossRefGoogle Scholar
  62. Liu, Y., & Feng, Y. (2012). A logistic based cellular automate model for continuous urban growth simulation: A case study of the Gold Coast City, Australia. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 643–662). Dordrecht: Springer.Google Scholar
  63. Lustick, I. (2002). PS-I: A user-friendly agent-based modelling platform for testing theories of political identity and political stability. Journal of Artificial Societies and Social Simulation, 5(3). Available at http://jasss.soc.surrey.ac.uk/5/3/7.html
  64. Macal, C. M., & North, M. J. (2005). Tutorial on agent-based modelling and simulation. In M. E. Euhl, N. M. Steiger, F. B. Armstrong & J. A. Joines (Eds.), Proceedings of the 2005 Winter Simulation Conference (pp. 2–15), Orlando.Google Scholar
  65. Magliocco, N. R. (2012). Exploring coupled housing and land market interactions through an economic agent-based model (CHALMS). In A. J. Heppenstall, A.T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 543–568). Dordrecht: Springer.Google Scholar
  66. Malleson, N. S. (2012). Using agent-based models to simulate crime. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 411–434). Dordrecht: Springer.Google Scholar
  67. Malleson, N. S., Heppenstall, A. J., & See, L. M. (2010). Simulating burglary with an agent-based model. Computers, Environment and Urban Systems, 34(3), 236–250.CrossRefGoogle Scholar
  68. Mandelbrot, B. (1983) The fractal geometry of nature. Freeman: San Francisco.Google Scholar
  69. Manson, S. M., Sun, S., & Bonsal, D. (2012). Agent-based modeling and complexity. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 125–139). Dordrecht: Springer.Google Scholar
  70. Nagel, K. (2003). Traffic networks. In S. Bornholdt & H. Schuster (Eds.), Handbook of graphs and networks: From the genome to the internet (pp. 248–272). New York: Wiley.Google Scholar
  71. Nagel, K., & Rasmussen, S. (1994). Traffic at the edge of Chaos. In R. Brooks (Ed.), Artificial life IV (pp. 222–236). Cambridge, MA: MIT Press.Google Scholar
  72. Ngo, T. A., & See, L. M. (2012). An agent-based modelling application of shifting cultivation. In A.J. Heppenstall, A. T. Crooks, L.M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 611–627). Dordrecht: Springer.Google Scholar
  73. North, M. J., & Macal, C. M. (2007). Managing business complexity: Discovering strategic solutions with agent-based modelling and simulation. New York: Oxford University Press.Google Scholar
  74. North, M. J., Macal, C. M., & Vos, J. R. (2004). Terrorist organization modelling. North American Association for Computational Social and Organizational Science Conference 2004, Pittsburgh.Google Scholar
  75. O’Sullivan, D. (2001). Exploring spatial process dynamics using irregular cellular automaton models. Geographical Analysis, 33(1), 1–18.CrossRefGoogle Scholar
  76. Parker, D. C. (2005). Integration of geographic information systems and agent-based models of land use: Challenges and prospects. In D. J. Maguire, M. Batty, & M. F. Goodchild (Eds.), GIS, spatial analysis and modelling (pp. 403–422). Redlands: ESRI Press.Google Scholar
  77. Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers, 93(2), 314–337.CrossRefGoogle Scholar
  78. Parker, D. C., Brown, D. G., Filatova, T., Riolo, R., Robinson, D. T., & Sun, S. (2012). Do land markets matter? A modeling ontology and experimental design to test the effects of land markets for an agent-based model of ex-urban residential land-use change. In A. J. Heppenstall, A.T. Crooks, L. M. See & M. Batty (Eds.), Agent-based models of geographical s ystems (pp. 525–542). Dordrecht: Springer.Google Scholar
  79. Parry, H. R., & Bithnell, M. (2012). Large scale agent-based modelling: A review and guidelines for model scaling. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.) Agent-based models of geographical systems (pp. 525–542). Dordrecht: Springer.Google Scholar
  80. Parunak, H. V. D., Savit, R., & Riolo, R. L. (1998). Agent-based modelling vs. equation-based modelling: A case study and users’ guide. Proceedings of Multi-Agent Systems and Agent-Based Simulation (MABS’98) (pp. 10–25), Paris.Google Scholar
  81. Patel, A., & Hudson-Smith, A. (2012). Tools, techniques and methods for macro and microscopic simulation. In A. J. Heppenstall, A. T. Crooks, L.M. See & M. Batty (Eds.), Agent-based models of geographical systems (pp. 379–407). Dordrecht: Springer.Google Scholar
  82. Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(1), 143–186.CrossRefGoogle Scholar
  83. Tesfatsion, L. (2006). Agent-based computational economics: A constructive approach to economic theory. In L. Tesfatsion & K. L. Judd (Eds.), Handbook of computational economics: Agent-based computational economics (Vol. 2, pp. 831–880). Amsterdam: North-Holland.Google Scholar
  84. Topa, G. (2001). Social interactions, local spillovers and unemployment. The Review of Economic Studies, 68(2), 261–295.CrossRefGoogle Scholar
  85. Torrens, P. M. (2003). Automata-based models of urban systems. In P. A. Longley & M. Batty (Eds.), Advanced spatial analysis: The CASA book of GIS (pp. 61–81). Redlands: ESRI Press.Google Scholar
  86. Torrens, P. M. (2006). Simulating sprawl. Annals of the Association of American Geographers, 96(2), 248–275.CrossRefGoogle Scholar
  87. White, R., Engelen, G., & Uljee, I. (1997). The use of constrained cellular automata for high-resolution modelling of urban land use dynamics. Environment and Planning B, 24(3), 323–343.CrossRefGoogle Scholar
  88. Wilson, A. G. (2000). Complex spatial systems: The modelling foundations of urban and regional analysis. Harlow: Pearson Education.Google Scholar
  89. Wolfram, S. (2002). A new kind of science. Champaign: Wolfram Media. Champaign, IL. Google Scholar
  90. Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. Knowledge Engineering Review, 10(2), 115–152.CrossRefGoogle Scholar
  91. Wu, B., Birkin, M., & Rees, P. (2008). A spatial microsimulation model with student agents. Computers Environment and Urban Systems, 32(6), 440–453.CrossRefGoogle Scholar
  92. Yang, Y., & Atkinson, P. M. (2005). An integrated ABM and GIS model of infectious disease transmission. In S. Batty (Ed.), Computers in Urban Planning and Urban Management (CUPUM), London.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.George Mason UniversityFairfaxUSA
  2. 2.University of LeedsLeedsUK

Personalised recommendations