Agent Tools, Techniques and Methods for Macro and Microscopic Simulation

Chapter

Abstract

Many situations exist that require virtual crowds to be modelled via computer simulations on varying scales. Such simulations often have conflicting goals; the need for large and complex worlds with rich behaviours in agents, but at the same time, the need for fast performance provided by simpler agents with reasonable crowd authoring. Our goal in this chapter is to establish the tools and ­techniques required for simulating large-scale virtual crowds. We identify both macroscopic and microscopic simulation methods and detail application areas where there is the need for navigation and behaviour of agents around the simulation environment, to correspond to realism. Hence, we actively identify different classes of applications that form balances between the conflicting goals that exist in simulating virtual populations.

Keywords

Path Planning Cellular Automaton Collision Avoidance Crowd Behaviour Crowd Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Batty, M., Desyllas, J., & Duxbury, E. (2003). The discrete dynamics of small-scale spatial events: Agent-based models of mobility in carnivals and street parades. International Journal of GIS, 17(7), 673–697.Google Scholar
  2. Bayazit, O. B., Lien, J.-M., & Amato, N. M. (2002). Roadmap-based flocking for complex environments. In Proceedings of the 10th Pacific conference on computer graphics and applications (p. 104). New York: IEEE Computer Society.CrossRefGoogle Scholar
  3. Bouvier, E., Cohen, E., & Najman, L. (1997). From crowd simulation to airbag deployment: Particle systems, a new paradigm of simulation. Journal of Electronic Imaging, 6(1), 94–107.CrossRefGoogle Scholar
  4. Braun, A., Musse, S. R., de Oliviera, L. P. L., & Bodmann, B. E. J. (2003). Modeling individual behaviors in crowd simulation. Proceedings of the 16th International Conference on Computer Animation and Social Agents. Los Alamitos: IEEE Computer Society. http://doi.ieeecomputersociety.org/10.1109/CASA.2003.1199317
  5. Castle, C. J. E. (2006). Developing a prototype agent-based pedestrian evacuation model to explore the evacuation of King’s Cross St Pancras underground station. London: Centre for Advanced Spatial Analysis (UCL). http://eprints.ucl.ac.uk/3327/. Sept 2006.
  6. Challenger, W., Clegg W. C., & Robinson A. M. (2009). Understanding crowd behaviours: Guidance and lessons identified. Technical Report prepared for UK Cabinet Office, Emergency Planning College, University of Leeds, 2009.Google Scholar
  7. Chenney, S. (2004). Flow tiles. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 233–242). Grenoble: Eurographics Association.CrossRefGoogle Scholar
  8. Cordeiro, O. C., Braun, A., Silveria, C. B., Musse, S. R., & Cavalheiro, G. G. (2005). Concurrency on social forces simulation model. First International Workshop on Crowd Simulation. EPFL, Lausanne.Google Scholar
  9. Crooks, A. T., & Heppenstall, A. J. (2012). Introduction to agent-based modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 85–105). Dordrecht: Springer.Google Scholar
  10. Galea, E. R., Galparsoro, J. M. P., & Pearce, J. (1993). A brief description of the EXODUS evacuation model. Proceedings of the International Conference on Fire Safety, San Francisco, Vol 18 (pp. 149–162).Google Scholar
  11. Helbing, D., Farkas, I. J., & Vicsek, T. (2000). Simulating dynamical features of escape panic, Nature, 407, pp. 487–490.Google Scholar
  12. Helbing, D., & Molnár, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51(5), 4282–4286.CrossRefGoogle Scholar
  13. Helbing, D., Molnár, P., Farkas, I. J., & Bolay, K. (2001). Self-organizing pedestrian movement. Environment and Planning B: Planning and Design, 28(3), 361–383.CrossRefGoogle Scholar
  14. Henderson, L. F. (1971). The statistics of crowd fluids. Nature, 229(5284), 381–383.CrossRefGoogle Scholar
  15. Hughes, R. L. (2003). The flow of human crowds. Annual Review of Fluid Mechanics, 35(1), 169–182.CrossRefGoogle Scholar
  16. Iltanen, S. (2012). Cellular automata in urban spatial modelling. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 69–84). Dordrecht: Springer.Google Scholar
  17. Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). A roadmap of agent research and development. http://eprints.ecs.soton.ac.uk/2112/
  18. Johnasson, A., & Kretz, T. (2012). Applied pedestrian modeling. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 451–462). Dordrecht: Springer.Google Scholar
  19. Kamphuis, A., & Overmars, M. H. (2004). Finding paths for coherent groups using clearance. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 19–28). Grenoble: Eurographics Association.CrossRefGoogle Scholar
  20. Kisko, T. M., Francis, R. L., & Nobel, C. R. (1998). Evacnet4 user’s guide. University of Florida.Google Scholar
  21. Lamarche, F., & Donikian, S. (2004). Crowd of virtual humans: A new approach for real time navigation in complex and structured environments. Computer Graphics Forum, 23(3), 509–518.CrossRefGoogle Scholar
  22. Lau, M., & Kuffner, J. J. (2005). Behavior planning for character animation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 271–280). Los Angeles: ACM.CrossRefGoogle Scholar
  23. Lau, M., & Kuffner, J. J. (2006). Precomputed search trees: Planning for interactive goal-driven animation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 299–308). Vienna: Eurographics Association.Google Scholar
  24. Lerner, A., Chrysanthou, Y., & Cohen-Or, D. (2006). Efficient cells-and-portals partitioning: Research articles. Computer Animation and Virtual Worlds, 17(1), 21–40.CrossRefGoogle Scholar
  25. Lien, J- M., Rodriguez, S., Malric, J., & Amato, N. M. (2005). Shepherding behaviors with multiple shepherds. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 3402–3407).Google Scholar
  26. Loscos, C., Marchal, D., & Meyer, A. (2003). Intuitive crowd behaviour in dense urban environments using local laws. In Theory and practice of computer graphics (TPCG’03) (pp. 122–129). Los Alamitos: IEEE Computer Society.CrossRefGoogle Scholar
  27. Musse, S. R. (2000). Human crowd modelling with various levels of behaviour control. Unpublished PhD thesis, EPFL.Google Scholar
  28. Musse, S. R., & Thalmann, D. (2001). Hierarchical model for real time simulation of virtual human crowds. IEEE Transactions Visualization and Computer Graphics, 7(2), 152–164.CrossRefGoogle Scholar
  29. Narain, R., Golas, A., Curtis, S., & Lin, M. C. (2009). Aggregate dynamics for dense crowd simulation. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics symposium on computer animation. New York: ACM.Google Scholar
  30. Pelechano, N., Allbeck, J. M., & Badler, N. I. (2008). Virtual crowds: Methods, simulation and control. Synthesis Lectures on Computer Graphics and Animation, 3(1), 1–176.CrossRefGoogle Scholar
  31. Pelechano, N., & Badler, N. I. (2006). Modeling crowd and trained leader behavior during building evacuation. IEEE Computer Graphics and Applications, 26(6), 80–86.CrossRefGoogle Scholar
  32. Pettre, J., Ciechomski, P. H., Maim, J., Yersin, B., Laumond, J.-P., & Thalmann, D. (2006). Real-time navigating crowds: Scalable simulation and rendering. Computer Animation and Virtual Worlds, 17(3–4), 445–455.CrossRefGoogle Scholar
  33. Pettre, J., Laumond, J., & Thalmann, D. (2005). A navigation graph for real-time crowd animation on multilayered and uneven terrain. Presented at the First International Workshop on Crowd Simulation (V-CROWDS’05), Lausanne. Google Scholar
  34. Reynolds, C. (1987). Flocks, herds and schools: A distributed behavioral model. Computer Graphics, 21(4), 25–34.CrossRefGoogle Scholar
  35. Reynolds, C. (1999). Steering behaviours for autonomous characters. Proceedings of the 1999 Game Developers Conference, San Jose, California (pp. 763–782). URL: http://www.red.com/cwr/steer/
  36. Reynolds, C. (2000). Interaction with groups of autonomous characters. Proceedings of the 2000 Game Developers Conference, San Francisco.Google Scholar
  37. Reynolds, C. (2006). Big fast crowds on PS3. In Proceedings of the 2006 ACM SIGGRAPH symposium on videogames (pp. 113–121). Boston: ACM.CrossRefGoogle Scholar
  38. Shao, W., & Terzopoulos, D. (2005). Autonomous pedestrians. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 19–28). Los Angeles: ACM.CrossRefGoogle Scholar
  39. Still, G. (2000). Crowd dynamics. Unpublished PhD thesis, Warwick University, Coventry.Google Scholar
  40. Sud, A., Gayle, R., Andersen, E., Guy, S., Lin, M., & Manocha, D. (2007). Real-time navigation of independent agents using adaptive roadmaps. In Proceedings of the 2007 ACM symposium on virtual reality software and technology (pp. 99–106). Newport Beach: ACM.CrossRefGoogle Scholar
  41. Sung, M., Kovar, L., & Gleicher, M. (2005). Fast and accurate goal-directed motion synthesis for crowds. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 291–300). Los Angeles: ACM.CrossRefGoogle Scholar
  42. Tecchia, F., & Chrysanthou, Y. (2000). Real-time rendering of densely populated urban environments. In Proceedings of the eurographics workshop on rendering techniques 2000 (pp. 83–88). New York: Springer.Google Scholar
  43. Tecchia, F., Loscos, C., Conroy-Dalton, R., & Chrysanthou, Y. L. (2001). Agent behaviour simulator (ABS): A platform for urban behaviour development. In Proceedings of the first international game technology conference and idea expo (GTEC’01). Hong Kong: ACM.Google Scholar
  44. Teller, S. J. (1992). Visibility computations in densely occluded polyhedral environments. Unpublished PhD thesis, University of California, Berkeley.Google Scholar
  45. Thalmann, D., Kermel, L., Opdyke, W., & Regelous, S. (2005). Crowd and group animation. In ACM SIGGRAPH 2005 courses (p. 1). Los Angeles: ACM.CrossRefGoogle Scholar
  46. Thalmann, D., & Musse, S. R. (2007). Crowd simulation. London: Springer (Online service, and Adriana Braun).Google Scholar
  47. Thompson, P. A., & Marchant, E. W. (1994). Simulex; developing new computer modelling techniques for evaluation. Unit of Fire Safety Engineering, University of Edinburgh.Google Scholar
  48. Treuille, A., Cooper, S., & Popovic, Z. (2006). Continuum crowds. ACM Transaction on Graph, 25(3), 1160–1168.CrossRefGoogle Scholar
  49. Tu, X., & Terzopoulos, D. (1994). Artificial fishes: Physics, locomotion, perception, behavior. In Proceedings of the 21st annual conference on computer graphics and interactive techniques (pp. 43–50). New York: ACM.Google Scholar
  50. Ulicny, B., Ciechomski, P., & Thalmann, D. (2004). Crowdbrush: Interactive authoring of real-time crowd scenes. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 243–252). Grenoble: Eurographics Association.CrossRefGoogle Scholar
  51. Ulicny, B., & Thalmann, D. (2002). Towards interactive real-time crowd behavior simulation. Computer Graphics Forum, 21(4), 767–775.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Centre for Advanced Spatial Analysis (CASA)University College LondonLondonUK

Personalised recommendations