Bayesian VAR Modelling ‘from General to Specific’

Chapter
Part of the The Springer Series on Demographic Methods and Population Analysis book series (PSDE, volume 24)

Abstract

The current chapter outlines the second of proposed perspectives on migration forecasting, which applies the ‘from general to specific’ modelling principle in the context of nested vector autoregression (VAR) models. In this way, the impact of various theory-based interdependent variables on migration can be tested. Similarly to the previous chapter, Section 6.1 outlines the theoretical foundations of VAR modelling, while Section 6.2 illustrates the approach with empirical forecasts for emigration rates among the countries under study.

Keywords

Predictive Distribution Migration Flow Emigration Rate Vector Error Correction Model Income Differential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bauwens, L., Lubrano, M., & Richard, J.-F. (1999). Bayesian inference in dynamic econometric models. Oxford, MA: Oxford University Press.Google Scholar
  2. Charemza, W. W., & Deadman, D. F. (1992). New directions in econometric practice. Aldershot: Edward Elgar [(1997). Nowa ekonometria. Warszawa: PWE].Google Scholar
  3. Cooley, T. F., & LeRoy, S. F. (1985). Atheoretical macroeconomics: A critique. Journal of Monetary Economics, 16(3), 283–308.CrossRefGoogle Scholar
  4. Fertig, M., & Schmidt, C. M. (2000). Aggregate-level migration studies as a tool for forecasting future migration streams (IZA Discussion paper 183). Institut zur Zukunft der Arbeit, Bonn.Google Scholar
  5. Gorbey, S., James, D., & Poot, J. (1999). Population forecasting with endogenous migration: An application to trans-tasman migration. International Regional Science Review, 22(1), 69–101.CrossRefGoogle Scholar
  6. Greene, W. H. (2000). Econometric analysis. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  7. Hendry, D. F. (1995). Dynamic econometrics. Oxford, MA: Oxford University Press.CrossRefGoogle Scholar
  8. Jennissen, R. (2004). Macro-economic determinants of international migration in Europe. Amsterdam: Dutch University Press.Google Scholar
  9. Litterman, R. B. (1979). Techniques of forecasting using vector autoregressions (Working Paper No. 115). Federal Reserve Bank of Minneapolis, Minneapolis, MN.Google Scholar
  10. Osiewalski, J. (2001). Ekonometria bayesowska w zastosowaniach [Bayesian econometrics in applications]. Cracow: Cracow University of Economics.Google Scholar
  11. Osiewalski, J., & Steel, M. F. J. (1996). A Bayesian analysis of exogeneity in models pooling time-series and cross-sectional data. Journal of Statistical Planning and Inference, 50(2), 187–206.CrossRefGoogle Scholar
  12. Ramos, F. F. R. (1996). VAR priors: Success or lack of a decent macroeconomic theory? Econometrics, Economics Working Paper Archive EconWPA, Internet Resource; econwpa.wustl.edu/eps/em/papers/9601/ 9601002.pdf. Accessed 31 July 2006.Google Scholar
  13. Sanderson, W. (1998). Knowledge can improve forecasts: A review of selected socioeconomic population projection models. Population and Development Review, 24(Suppl.), 88–117.CrossRefGoogle Scholar
  14. Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1–48.CrossRefGoogle Scholar
  15. Sinn, H.-W., Flaig, G., Werding, M., Munz, S., Duell, N., & Hofmann, H. (2001). EU-Erweiterung und Arbeitskräftemigration, Wege zu einer schrittweisen Annäherung der Arbeitsmärkte. IFO-Institut für Wirtschaftsforschung, München.Google Scholar
  16. Wróblewska, J. (2009). Bayesian model selection in the analysis of cointegration. Central European Journal of Economic Modelling and Econometrics, 1(1), 57–69; http://www.cejeme.eu.Google Scholar
  17. Zellner, A. (1971). An introduction to Bayesian inference in econometrics. New York: Wiley.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Social Sciences, Centre for Population Change and S3RI, University of SouthamptonSouthamptonUK

Personalised recommendations