Digital Soil Mapping pp 423-428

Part of the Progress in Soil Science book series (PROSOIL, volume 2) | Cite as

GlobalSoilMap.net – A New Digital Soil Map of the World

  • Alfred E. Hartemink
  • Jon Hempel
  • Philippe Lagacherie
  • Alex McBratney
  • Neil McKenzie
  • Robert A. MacMillan
  • Budiman Minasny
  • Luca Montanarella
  • Maria Lourdes de Mendonça Santos
  • Pedro Sanchez
  • Markus Walsh
  • Gan-Lin Zhang

Abstract

Knowledge of the world soil resources is fragmented and dated. There is a need for accurate, up-to-date and spatially referenced soil information as frequently expressed by the modelling community, farmers and land users, and policy and decision makers. This need coincides with an enormous leap in technologies that allow for accurately collecting and predicting soil properties. We work on a new digital soil map of the world using state-of-the-art and emerging technologies for soil mapping and predicting soil properties. The global land surface will be mapped in 5 years and the map consists of the primary functional soil properties at a grid resolution of 90 by 90 m. It will be freely available, web-accessible and widely distributed and used. The maps will be produced by a global consortium with centres in each of the continents: NRCS for North America, Embrapa for Latin America, JRC for Europe, TSBF-CIAT for Africa, ISSAS for parts of Asia and CSIRO for Oceania. This new global soil map will be supplemented by interpretation and functionality options that aim to assist better decisions in a range of global issues like food production and hunger eradication, climate change, and environmental degradation. In November 2008, a grant has of US$ 18 million has been obtained from the Bill & Melinda Gates foundation to map most parts in Sub-Sahara Africa, and make all Sub-Saharan Africa data available. From this grant there are funds for coordinating efforts in the global consortium.

Keywords

Soil map Global consortium Soil information system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Dor, E. et al., 2006. Quantitative mapping of the soil rubification process on sand dunes using an airborne hyperspectral sensor. Geoderma 131:1–21.CrossRefGoogle Scholar
  2. Dudal, R., and Batisse, M., 1978. The soil map of the world. Nature and Resources 14:2–6.Google Scholar
  3. Gomez, C., Rossel, R.A.V., and McBratney, A.B., 2008. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma 146:403–411.CrossRefGoogle Scholar
  4. Hartemink, A.E., 2008. Soil map density and nation’s wealth and income, pp. 53–66. In: Hartemink, A.E., McBratney, A.B., and Mendonca-Santos, M.L. (eds.), Digital Soil Mapping with Limited Data. Springer, Dordrecht.CrossRefGoogle Scholar
  5. Hengl, T., Toomanian, N., Reuter, H.I., and Malakouti, M.J., 2007. Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma 140:417–427.CrossRefGoogle Scholar
  6. McBratney, A.B., Santos, M.L.M., and Minasny, B., 2003. On digital soil mapping. Geoderma 117:3–52.CrossRefGoogle Scholar
  7. McKenzie, N.J., and Austin, M.P., 1993. A Quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation. Geoderma 57:329–355.CrossRefGoogle Scholar
  8. Sanchez, P.A., Ahamed, S., Carre, F., Hartemink, A.E., Hempel, J., Huising, J., Lagacherie, P., McBratney, A.B., McKenzie, N.J., Mendonca-Santos, M.D., Minasny, B., Montanarella, L., Okoth, P., Palm, C.A., Sachs, J.D., Shepherd, K.D., Vagen, T.G., Vanlauwe, B., Walsh, M.G., Winowiecki, L.A., and Zhang, G.L., 2009. Digital soil map of the world. Science 325:680–681.CrossRefGoogle Scholar
  9. Shepherd, K.D., and Walsh, M.G., 2002. Development of reflectance spectral libraries for characterization of soil properties. Soil Science Society of America Journal 66:988–998.Google Scholar
  10. Vasques, G.M., Grunwald, S., and Sickman, J.O., 2008. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 146:14–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Alfred E. Hartemink
    • 1
  • Jon Hempel
    • 2
  • Philippe Lagacherie
    • 3
  • Alex McBratney
    • 4
  • Neil McKenzie
    • 5
  • Robert A. MacMillan
    • 6
    • 1
  • Budiman Minasny
    • 4
  • Luca Montanarella
    • 7
  • Maria Lourdes de Mendonça Santos
    • 8
  • Pedro Sanchez
    • 9
  • Markus Walsh
    • 10
  • Gan-Lin Zhang
    • 11
  1. 1.ISRIC – World Soil InformationWageningenThe Netherlands
  2. 2.USDA Natural Resources Conservation Service, National Soil Survey CenterLincolnUSA
  3. 3.INRA Laboratoire dȁétude des Interactions Sol Agrosystème Hydrosystème (LISAH),UMR 1221 INRA-IRD-Supagro MontpellierMontpellierFrance
  4. 4.Food & Natural Resources, The University of SydneySydneyAustralia
  5. 5.CSIRO Land and Water, Bruce E. Butler LaboratoryCanberraAustralia
  6. 6.LandMapper Environmental Solutions Inc.EdmontonCanada
  7. 7.European Commission, Land Management and Natural Hazards Unit, Institute for Environment and Sustainability, DG Joint Research CenterIspraItaly
  8. 8.EMBRAPA Solos – Brazilian Agricultural Research Corporation, The National Centre of Soil ResearchRio de JaneiroBrazil
  9. 9.Millennium Villages Project, The Earth Institute at Columbia UniversityPalisadesUSA
  10. 10.Tropical Soil Biology and Fertility Institute (CIAT-TSBF), ICRAF ComplexGigiri, NairobiKenya
  11. 11.Institute of Soil Science, Chinese Academy of SciencesNanjingChina

Personalised recommendations