The Interplay Between Ontology as Categorial Analysis and Ontology as Technology

Chapter

Abstract

The notion of ontology today comes with two perspectives: one traditionally from philosophy and one more recently from computer science. The philosophical perspective of ontology focuses on categorial analysis, i.e., what are the entities of the world and what are the categories of entities? Prima facie, the intention of categorial analysis is to inventory reality. The computer science perspective of ontology, i.e., ontology as technology, focuses on those same questions but the intention is distinct: to create engineering models of reality, artifacts which can be used by software, and perhaps directly interpreted and reasoned over by special software called inference engines, to imbue software with human level semantics. Philosophical ontology arguably begins with the Greek philosophers, more than 2,400 years ago. Computational ontology (sometimes called “ontological” or “ontology” engineering) began about 15 years ago.

References

  1. Akman, V. and S. Mehmet. 1997. The use of situation theory in context modeling. Computational Intelligence 13(3):427–438, August, 1997.CrossRefGoogle Scholar
  2. Asperti, A. and G. Longo. 1991. Categories, types and structures. Cambridge, MA: MIT Press.Google Scholar
  3. Barwise, J., and J. Seligman. 1997. Information flow: The logic of distributed systems. Cambridge, UK: Cambridge University Press.Google Scholar
  4. Basic Formal Ontology (BFO). http://www.ifomis.uni-saarland.de/bfo
  5. Bechhofer, S., F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider, and L.A. Stein. 2004. OWL Web Ontology Language Reference. W3C Recommendation 10 Feb 2004. http://www.w3.org/TR/owl-ref/
  6. Bittner, T., B. Smith, and M. Donnelly. 2007. The logic of systems of granular partitions. Manuscript. http://ontology.buffalo.edu/smith/articles/BittnerSmithDonnelly.pdf
  7. Bittner, T., and B. Smith. 2003. A theory of granular partitions. In Foundations of geographic information science, eds. M. Duckham, M.F. Goodchild, and M.F. Worboys, 117–151, London: Taylor and Francis Books.CrossRefGoogle Scholar
  8. Bittner, T., and B. Smith. 2001. Granular partitions and vagueness. In Formal ontology and information systems, eds. C. Welty, and B. Smith, 309–321, New York, NY: ACM Press.Google Scholar
  9. Blair, P., R.V. Guha, and W. Pratt. 1992. Microtheories: An ontological engineer’s guide. Technical Report Cyc-050-92, 5 Mar 1992, Cycorps, Austin, TX. http://www.cyc.com/tech-reports/cyc-050-92/cyc-050-92.html
  10. Bouquet, P., F. Giunchiglia, F. Van Harmelen, L. Serafini, and H. Stuckenschmidt. 2003. C-OWL: Contextualizing ontologies. In 2nd International Semantic Web Conference (ISWC 2003), eds. D. Fensel, K.P. Sycara, and J. Mylopoulos, 164–179, Sanibel Island, FL, 20–23 Oct 2003.Google Scholar
  11. Cadoli, M., and F.M. Donini. 1997. A survey on knowledge compilation. AI communications. The European Journal for Artificial Intelligence 10:137–150.Google Scholar
  12. Crole, R.L. 1994. Categories for types. Cambridge: Cambridge University Press.Google Scholar
  13. Daconta, M., L. Obrst, K. Smith. 2003. The semantic web: The future of XML, web services, and knowledge management. New York, NY: Wiley, June 2003.Google Scholar
  14. Darwiche, A., and P. Marquis. 2001. A knowledge compilation map. http://www.cs.ucla.edu/~darwiche/d116.pdf. An earlier version appeared as “A Perspective on Knowledge Compilation.” In Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI’01), Seattle, WA, 175–182.
  15. Davey, B.A., and H.A. Priestley. 1991. Introduction to lattices and order. Cambridge, UK: Cambridge University Press.Google Scholar
  16. Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE). http://www.loa-cnr.it/DOLCE.html
  17. Farmer, W.M., J.D. Guttman, and F.J. Thayer. 1992. Little theories. In Automated deduction – CADE-11, LNCS, vol. 607, ed. D. Kapur, 567–581. http://imps.mcmaster.ca/doc/major-imps-papers.html
  18. Fikes, R., and C. Welty. 2006. Interoperable knowledge representation for intelligence support (IKRIS). Advanced Research and Development Activity (ARDA)/Disruptive Technology Office (DTO). Final briefing, Nov 2006.Google Scholar
  19. Fox, M., and M. Gruninger. 1994. Ontologies for enterprise integration. In Cooperative Proceedings of the 2nd Conference on Cooperative Information Systems, Toronto, ON.Google Scholar
  20. Ganter, B., and R. Wille. 1996. Formal concept analysis: Mathematical foundations. Berlin, Heidelberg, New York: Springer.Google Scholar
  21. Genesereth, M.R., and Nilsson, N.J. 1987. Logical foundations of artificial intelligence. San Mateo, CA: Morgan Kaufmann Publishers.Google Scholar
  22. Graedel, E., P.G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M.Y. Vardi, Y. Venema, and S. Weinstein. 2007. Finite model theory and its applications. Heidelberg: Springer.Google Scholar
  23. Grenon, P. 2003. Spatio-temporality in basic formal ontology: SNAP and SPAN, upper level ontology, and framework of formalization (part I). Technical Report Series 05/2003, IFOMIS.Google Scholar
  24. Grenon, P., and B. Smith. 2003. Snap and span: Towards dynamic geospatial ontology.Spatial Cognition and Computation 4(1), forthcoming.Google Scholar
  25. Gruber, T. R. (1991). The role of common ontology in achieving sharable, Reusable knowledge bases. In Principles of Knowledge Representation and Reasoning: Proceedings of the Second International Conference, eds. J.A. Allen, R. Fikes, and E. Sandewall, 601–602, Cambridge, MA: Morgan Kaufmann.Google Scholar
  26. Gruber, T. 1993. A Translation approach to portable ontology specifications. Knowledge Acquisition 5:199–220.CrossRefGoogle Scholar
  27. Guarino N. 1994. The Ontological Level. Invited Paper Presented at IV Wittgenstein Symposium, Kirchberg, Austria, 1993. In Philosophy and the cognitive sciences, eds. R. Casati, B. Smith, and G. White, Vienna: Hölder-Pichler-Tempsky.Google Scholar
  28. Guarino, N, ed. 1998. Formal ontology and information systems introduction to formal ontology in information systems. Proceedings of the First International Conference (FOIS’98), 6–8 June 199, Trento, Italy, 3–18. Amsterdam: IOS Press.Google Scholar
  29. Guarino, N., and Giaretta, P. 1995. Ontologies and knowledge bases: Towards a terminological clarification. In Towards very large knowledge bases: Knowledge building and knowledge sharing, ed. N. Mars, 25–32, Amsterdam: IOS Press.Google Scholar
  30. Guarino, N., and R. Poli, eds. 1995. Formal ontology in information technology. Special issue of the International Journal of Human-Computer Studies 43(5/6). http://www.ladseb.pd.cnr.it/infor/Ontology/IJHCS/IJHCS.html
  31. Guarino, N., and C. Welty. 2002. Evaluating ontological decisions with OntoClean. Communications of the ACM 45(2):61–65. New York, NY: ACM Press. http://portal.acm.org/citation.cfm?doid=503124.503150 CrossRefGoogle Scholar
  32. Guha R.V. 1991. Contexts: A formalization and some applications. PhD Thesis, Stanford University. Also technical report STAN-CS-91-1399-Thesis, and MCC Technical Report Number ACT-CYC-423-91.Google Scholar
  33. Guha, R., and D. Lenat. 1990. Cyc: A mid-term report. Microelectronics Technology and Computer Corporation (MCC), Austin, TX. Technical Report ACT-CYC-134-90.Google Scholar
  34. Hamlyn, D.W. 1984. Metaphysics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  35. Hartmann, N. 1975. The new ways of ontology. Westport, Conn.: Greenwood Press.Google Scholar
  36. Herre, H., B. Heller, P. Burek, R. Hoehndorf, F. Loebe, and H. Michalek. 2006. General formal ontology (GFO), part I: Basic principles, Version 1.0. Deliverable No. 8 – July 2006. http://www.onto-med.de/en/publications/scientific-reports/om-report-no8.pdf
  37. Hohendorf, R., F. Loebe, R. Poli, H. Herre, and J. Kelso. 2008. GFO-Bio: A biological core ontology. Applied Ontology 3(4):219–227.Google Scholar
  38. Husserl, E. 2001. Logical investigations, vols. 1 and 2, Trans. J.N. Findlay with a new Preface by Michael Dummett, edited with a new introduction by Dermot Moran, Routledge, vols. 1 and 2.Google Scholar
  39. Kautz, H., B. Selman. 1994. An empirical evaluation of knowledge compilation. Proceedings of AAAI-94, Seattle, WA, July 1994.Google Scholar
  40. Kent, R. 2004. The IFF foundation for ontological knowledge organization. In Knowledge Organization and Classification in International Information Retrieval, eds. N.J. Williamson, and C. Beghtol, volume 37 of Cataloging and Classification Quarterly, 187–203. New York, NY: Haworth Press.Google Scholar
  41. Interoperable Knowledge Representation for Intelligence Support (IKRIS). http://nrrc.mitre.org/NRRC/ikris.htm
  42. ISO Common Logic. Common logic standard. http://cl.tamu.edu/
  43. Keefe, R., and P. Smith, eds. 1999. Vagueness: A reader. Cambridge, MA: MIT Press.Google Scholar
  44. Lewis, D. 1980. Index, context, and content. In Philosophy and grammar, eds. S. Kanger, and S. Ohman. Dordrecht: Reidel Publishing.Google Scholar
  45. Lambek, J., and P. Scott. 1986. Introduction to higher order categorical logic, volume 7 of Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press.Google Scholar
  46. Loux, M.J. 2002. Metaphysics: A contemporary introduction, 2nd edn. London and New York, NY: Routledge.Google Scholar
  47. Mac Lane, S. 1971. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Heidelberg: Springer.Google Scholar
  48. Masolo, C., S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. 2003. Wonderweb deliverable D18: Ontology library (Final). Technical report, Laboratory for Applied Ontology – ISTC-CNR, Trento.Google Scholar
  49. Margolis, E., and S. Laurence. 1999. Concepts: Core readings. Cambridge, MA and London: MIT Press.Google Scholar
  50. McCarthy, J. 1987. Generality in artificial intelligence, Communications of the ACM 30(12):1030–1035.CrossRefGoogle Scholar
  51. McCarthy, J. 1990. Formalizing common sense: Papers by John McCarthy. Norwood, NJ: Ablex Publishing Corporation.Google Scholar
  52. McCarthy, J. 1993. Notes on formalizing context. In Proceedings of the 13 h International Joint Conference on Artificial Intelligence, Chambery, France.Google Scholar
  53. McCarthy, J., S. Buvač. 1997. Formalizing context (expanded notes). In Computing natural langauge, eds. A. Aliseda, R. van Glabbeek, and D. Westerståhl. Stanford, CA: Stanford University. http://www-formal.stanford.edu Google Scholar
  54. Menzel, C. 1999. The objective conception of context and its logic. Minds and Machines 9(1):29–56, Feb 1999.CrossRefGoogle Scholar
  55. Mitra, P., G. Wiederhold, and M. Kersten. 2000. A graph-oriented model for articulation of ontology interdependencies. Accepted for Extending DataBase Technologies, EDBT 2000, Konstanz, Germany, March 2000. http://www-db.stanford.edu/SKC/publications.html Google Scholar
  56. National Center for Ontological Research (NCOR). http://ncor.buffalo.edu/
  57. Neches, R., R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W.R. Swartout. 1991. Enabling technology for knowledge sharing. AI Magazine 12(3), Fall 1991. http://www.isi.edu/isd/KRSharing/vision/AIMag.html
  58. Noy, N.F., and M.A. Musen. 2000. PROMPT: Algorithm and tool for automated ontology merging and alignment. 17th National Conference on Artificial Intelligence (AAAI-2000), Austin, TX. Technical Report SMI-2000-0831, Stanford Medical Informatics, Stanford University. http://smi-web.stanford.edu/pubs/SMI_Abstracts/SMI-2000-0831.html
  59. Open Biomedical Ontologies (OBO). Foundry. http://obofoundry.org
  60. Object-Centered High-level Reference Ontology (OCHRE). http://www.loa-cnr.it/DOLCE.html
  61. Obrst, L. 2006. What is an ontology? A briefing on the range of semantic models. ontolog forum, 12 and 19 Jan 2006. http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2006_01_12
  62. Obrst, L., T. Hughes, and S. Ray. 2006. Prospects and possibilities for ontology evaluation: The view from NCOR. Workshop on Evaluation of Ontologies for the Web (EON2006), Edinburgh, UK, 22 May 2006.Google Scholar
  63. Obrst, L., and I. Mani, eds. 2000. Proceedings of the Workshop on Semantic Approximation, Granularity, and Vagueness, A Workshop of the Seventh International Conference on Principles of Knowledge Representation and Reasoning KR’2000, Breckenridge, CO, 11 Apr 2000.Google Scholar
  64. Obrst, L, and D. Nichols. 2005. Context and ontologies: Contextual indexing of ontological expressions. AAAI 2005 Workshop on Context and Ontologies, Poster, AAAI 2005, 9–13 July, Pittsburgh, PA. http://www.mitre.org/work/tech_papers/tech_papers_05/05_0903/index.html
  65. Obrst, L., G. Whittaker, A. Meng. 1999a. Semantic context for interoperable distributed object systems. Poster, Modeling and Using Context: Second International and Interdisciplinary Conference (Context’99), Trento, Italy, Sep 1999.Google Scholar
  66. Obrst, L., G. Whittaker, A. Meng. 1999b. Semantic context for object exchange. Workshop on Reasoning in Context for AI Applications, Patrick Brézillon, Roy Turner, Jean-Charles Pomerol, Elise Turner, co-chairs. AAAI-99, Orlando, FL, July, 1999. Technical Report WS-99-14. Menlo Park, CA: AAAI Press.Google Scholar
  67. Ontology in Information Systems (FOIS-2001), eds. C. Welty, and B. Smith, Ogunquit, Maine, 17–19 Oct 2001.Google Scholar
  68. Ontology Summit. 2007. Ontology, taxonomy, folksonomy: Understanding the distinctions. http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2007
  69. Petrazycki, L. 1955. Law and morality. Partial trans. by H.W. Babb, with an introduction by N.S. Timasheff. Cambridge, MA: Harvard University Press.Google Scholar
  70. Pierce, B. 1991. Basic category theory for computer scientists. Cambridge, MA: MIT Press.Google Scholar
  71. Poli, R. Ontology: The categorial stance. See TAO, vol 1.Google Scholar
  72. Poli, R. 1998. Levels. Axiomathes 9(1–2):197–211.CrossRefGoogle Scholar
  73. Poli, R. 2001a. The basic problem of the theory of levels of reality. Axiomathes 12(3–4):261–283.CrossRefGoogle Scholar
  74. Poli, R. 2001b. Alwis. Ontology for Knowledge Engineers. PhD Thesis, Utrecht.Google Scholar
  75. Poli, R. 2002. Ontological methodology. International Journal of Human-Computer Studies 56:639–664.CrossRefGoogle Scholar
  76. Poli, R. 2003. Descriptive, formal and formalized ontologies. In Husserl’s logical investigations reconsidered, eds. D. Fisette, 193–210. Dordrecht: Kluwer.Google Scholar
  77. Poli, R. 2007. Three obstructions: forms of causation, chronotopoids, and levels of reality. Axiomathes 16:1–18.CrossRefGoogle Scholar
  78. Ranganathan, S.R. 1962. Elements of library classification, 3rd edn. New York, NY: Asia Publishing House.Google Scholar
  79. Restall, G. 2000. An introduction to substructural logics. New York, NY and London: Routledge.Google Scholar
  80. Rogers, J.E., and A.L. Rector. 2000. GALEN’s model of parts and wholes: Experience and comparisons. Annual Fall Symposium of American Medical Informatics Association, Los Angeles, CA, 714–718. Philadelphia, PA: Hanley and Belfus Inc.Google Scholar
  81. Semy, S., M. Pulvermacher, and L. Obrst. 2005. Toward the use of an upper ontology for U.S. Government and U.S. Military Domains: An evaluation. MITRE Technical Report, MTR 04B0000063, Nov 2005. http://www.mitre.org/work/tech_papers/tech_papers_05/04_1175/index.html
  82. Sider, T. 2001. Four-dimensionalism. An ontology of persistence and Time. Oxford: Clarendon Press.Google Scholar
  83. Simons, P. 1987. Parts: A study in ontology. Oxford: Clarendon Press.Google Scholar
  84. Smith, B. 2001a. Fiat objects. Topoi 20(2):131–148.CrossRefGoogle Scholar
  85. Smith, K., L. Obrst. 1999. Unpacking the semantics of source and usage to perform semantic reconciliation in large-scale information systems. SIGMOD special issue on Semantic Interoperability, eds. A. Sheth, and A. Ouksel, SIGMOD, Mar 1999.Google Scholar
  86. Sowa, J. 2000. Knowledge representation: Logical, philosophical, and computational foundations. Pacific Grove, CA: Brooks/Cole Thomson Learning.Google Scholar
  87. Suggested Upper Merged Ontology (SUMO). http://www.ontologyportal.org/
  88. Uschold, M., M. Gruninger. 1996. Ontologies: Principles, methods, and applications. The Knowledge Engineering Review 11(2):93–136.CrossRefGoogle Scholar
  89. Varzi, A. 2000. Vagueness, logic, and ontology, to appear in The Dialogue. http://www.columbia.edu/~av72/papers/Dialogue_2000.pdf
  90. Varzi, A.C. 1998. Basic problems of mereotopology. In Formal ontology in information systems, eds. N. Guarino, 29–38. Amsterdam: IOS Press.Google Scholar
  91. Varzi, A., and F. Pianesi. 1996a. Events, topology, and temporal relations. The Monist 78(1):89–116.Google Scholar
  92. Varzi, A., and F. Pianesi. 1996b. Refining temporal reference in event structures. Notre Dame Journal of Formal Logic 37(1):71–83.CrossRefGoogle Scholar
  93. Wiederhold, G. 1994. An algebra for ontology composition. Proceedings of 1994 Monterey Workshop on Formal Methods, Sept 1994, U.S. Naval Postgraduate School, Monterey, CA, 56–61. http://www-db.stanford.edu/pub/gio/paperlist.html
  94. Williamson, T. 1998. Vagueness. London and New York, NY: Routledge.Google Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.University of TrentoTrentoItaly
  2. 2.The MITRE CorporationMcLeanUSA

Personalised recommendations