Optics and Electric Field Effects in Nematic and Smectic A Liquid Crystals

Chapter

Abstract

We begin with the electric displacement vector \( {D_j} = {\varepsilon_{ij}}{E_i} \) where i, j = x′, y′, z′ are Cartesian coordinates and the summation over repeated indices is inferred. The tensor of dielectric permittivity is symmetric \( {\varepsilon_{ij}} = {\varepsilon_{ji}} \)and generally (even for biaxial medium) has six independent components.

Keywords

Liquid Crystal Nematic Liquid Crystal Nematic Phase Free Energy Density Dielectric Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference

  1. 1.
    Yariv, A.: Quantum Electronics, 3rd edn. J. Wiley & Sons, NY (1989)Google Scholar
  2. 2.
    Born, M., Wolf, E.: Principles of Optics. Pergamon Press, Oxford (1980)Google Scholar
  3. 3.
    de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Clarendon Press, Oxford (1995)Google Scholar
  4. 4.
    Yeh, P., Gu, C.: Optics of liquid crystal Displays. J. Wiley & Sons, NY (1999)Google Scholar
  5. 5.
    Khoo, I.-C., Wu, S.-T.: Optics and Nonlinear Optics of Liquid Crystals. World Scientific, Singapore (1993)Google Scholar
  6. 6.
    Mauguin, C.: Sur les cristaux liquides de Lehman. Bull. Soc. Fr. Miner. 34, 71–117 (1911)Google Scholar
  7. 7.
    Blinov, L.M.: Electro-Optical and Magneto-Optical Properties of Liquid Crystals. J. Wiley & Sons, Chichester (1983)Google Scholar
  8. 8.
    Yech, P.: Optical Waves in Layered Media. Appl. Opt. Wiley, New York (1988).Google Scholar
  9. 9.
    Landau, L.D., Lifshits, E.M.: Electrodynamics of Continuous Media. Nauka, Moscow (1982) (in Russian). (see also Electrodynamics of Continuous Media. Pergamon, London (1960))Google Scholar
  10. 10.
    Aver’yanov, E.M.: Effects of Local Field in Optics of Liquid Crystals. Nauka, Novosibirsk (1999) (in Russian)Google Scholar
  11. 11.
    Chatelain, P.: Sur la diffusion, par les cristaux liquides du type nematique, de la lumier polarisee. Act. Cryst. 1, 315–323 (1948)CrossRefGoogle Scholar
  12. 12.
    De Gennes, P.G.: Fluctuations d’orientation et diffusion Rayleigh dans un cristal nématique. C. R. Acad. Sci. Paris 266, 15–17 (1968)Google Scholar
  13. 13.
    Groupe d’Etude des Cristaux Liquides: Dynamics of fluctuations in nematic liquid crystals. J. Chem. Phys. 51, 816–822 (1969)CrossRefGoogle Scholar
  14. 14.
    de Gennes, P.G.: Theory of the smectic state of liquid crystals. J. Physique (Paris) 30, Colloq. C4, 65–71 (1969).Google Scholar
  15. 15.
    Freedericksz, V., Repiewa, A.: Theoretisches und Experimentelles zur Frage nach der Natur der anisotropen Flüssigkaiten. Zs. Physik 42, 532–546 (1927)CrossRefADSGoogle Scholar
  16. 16.
    Saupe, A.: Die Biegungselastizität der nematischen Phase von Azoxyanisol. Z. Naturforschg. 15a, 815–822 (1960)ADSGoogle Scholar
  17. 17.
    Deuling, H.J.: Elasticity of nematic liquid crystals. In: Liebert, L. (ed.) Liquid Crystals, pp. 77–107. (Ehrenreich, H., Seitz, F., Turnbull, D. (eds.) series Solid State Physics). Acad Press, New York (1978).Google Scholar
  18. 18.
    Rapini, A., Papoular, M.: Distorsion d’une lamelle nematique sous champ magnetique conditions d’ancrage aux parois. J. de physique, 30, Colloq C4, 54–56 (1969).Google Scholar
  19. 19.
    Nehring, J., Kmetz, A.R., Scheffer, T.J.: Analysis of weak-boundary-coupling effects in liquid crystal displays. J. Appl. Phys. 47, 850–857 (1976)CrossRefADSGoogle Scholar
  20. 20.
    Ong, H.L., Meyer, R.B., Hurd, A.J.: Multistable orientation in a nematic liquid crystal cell induced by external field and interfacial interaction. J. Appl. Phys. 55, 2809–2815 (1984)CrossRefADSGoogle Scholar
  21. 21.
    Brochard, F., Pieranski, P., Guyon, E.: Dynamics of the orientation of a nematic-liquid-crystal film in a variable magnetic field. Phys. Rev. Lett. 28, 1681–1683 (1972)CrossRefADSGoogle Scholar
  22. 22.
    Van Doorn, C.Z.: Transient behaviour of a twisted nematic liquid-crystal layer in an electric field. J. Physics (Paris), 36, Colloq. C1, 261–263 (1975).Google Scholar
  23. 23.
    Schadt, M., Helfrich, W.: Voltage dependent optical activity of a twisted nematic liquid crystals. Appl. Phys. Lett. 18, 127–128 (1971)CrossRefADSGoogle Scholar
  24. 24.
    Chigrinov, V.G.: Liquid Crystal Devices: Physics and Applications. Artech House, Boston (1999)Google Scholar
  25. 25.
    Meyer, R.B.: Piezoelectric effect in liquid crystals. Phys. Rev. Lett. 22, 917–921 (1969)CrossRefADSGoogle Scholar
  26. 26.
    Prost, J., Marcerou, J.P.: On the macroscopic interpretation of flexoelectricity. J. de physique 38, 315–324 (1977)CrossRefGoogle Scholar
  27. 27.
    Prost, J., Pershan, P.S.: Flexoelectricity in nematic and smectic-A liquid crystals. J. Appl. Phys. 47, 2298–2313 (1976)CrossRefADSGoogle Scholar
  28. 28.
    Blinov, L.M., Barnik, M.I., Ohoka, H., Ozaki, M., Shtykov, N.M., Yoshino, K.: Surface and Flexoelectric Polarization in a Nematic Liquid Crystal 5CB. Eur. J. Phys. E 4, 183–192 (2001)CrossRefGoogle Scholar
  29. 29.
    Harden, J., Mbanga, B., Éber, N., Fodor-Csorba, K., Sprunt, S., Gleeson, J.T., Jákly, A.: Giant flexoelectricity of bent-core nematic liquid crystals. Phys. Rev. Lett. 97, 157802(1–4) (2006).Google Scholar
  30. 30.
    Schmidt, D., Schadt, M., Helfrich, W.: Liquid crystalline curvature electricity: the bending mode of MBBA. Z. Naturforsch. 27a, 277–280 (1972)ADSGoogle Scholar
  31. 31.
    Derzhanski, A., Petrov, A.G., Mitov, M.D.: One-dimensional dielectric-flexoelectric deformations in nematic layers. J. physique (Paris) 39, 273–285 (1978)Google Scholar
  32. 32.
    Derzhanski, A., Petrov, A.G.: Flexoelectricity in nematic liquid crystals. Acta Phys. Polonica A55, 747–767 (1979)Google Scholar
  33. 33.
    Blinov, L.M., Durand, G., Yablonsky, S.V.: Curvature oscillations and linear electro-optical effect in a surface layer of a nematic liquid crystal. J. Phys. II France 2, 1287–1297 (1992)CrossRefGoogle Scholar
  34. 34.
    Barnik, M.I., Blinov, L.M., Trufanov, A.N., Umansky, B.A.: Flexoelectric domains in liquid crystals. J. Physique (Paris) 39, 417–422 (1978)Google Scholar
  35. 35.
    Bobylev, YuP, Pikin, S.A.: Threshold piezoelectric instability in liquid crystals. Zh. Exp. Teor. Fiz. 72, 369–374 (1977)Google Scholar
  36. 36.
    Palto, S.P., Mottram, N.J., Osipov, M.A.: Flexoelectric instability and spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions. Phys. Rev. E, 75, 061707(1–8) (2007).Google Scholar
  37. 37.
    Blinov, L.M.: Behavior of liquid crystal in electric and magnetic fields. In: Demus, D., Goodby, J., Gray, G.W., Spiess, H.-W., Vill, V. (eds.) Physical Properties of Liquid Crystals, pp. 375–432. Wiley-VCH, Weinheim (1999).Google Scholar
  38. 38.
    Dubois-Violette, E., Durand, G., Guyon, E., Manneville, P., Pieranski, P.: Instabilities in nematic liquid crystals. In: Liebert, L. (ed.) Liquid Crystals, pp. 147–208. (Ehrenreich, H., Seitz, F., Turnbull, D. (eds.) series Solid State Physics), Academic Press, New-York, (1978).Google Scholar
  39. 39.
    Kramer, L., Pesch, W.: Electrodynamic convection in nematics. In: Dunmur, D., Fukuda, A., Luckhurst, G. (eds.) Physical Properties of Liquid crystals: Nematics, pp. 441–454. INSPEC, London (2001).Google Scholar
  40. 40.
    Carr, E.F., Flint, W.T., Parker, J.H.: Effect of dielectric and conductivity anisotropies on molecular alignment in a liquid crystal. Phys. Rev. A11, 1732–1736 (1975)ADSGoogle Scholar
  41. 41.
    Williams, R.: Domains in liquid crystals. J. Chem. Phys. 39, 384–388 (1963)CrossRefADSGoogle Scholar
  42. 42.
    Helfrich, W.: Conduction induced alignment in nematic liquid crystals. Basic models and stability consideration. J. Chem. Phys. 51, 4092–4105 (1969)CrossRefADSGoogle Scholar
  43. 43.
    Dubois-Violette, E., de Gennes, P.G., Parodi, O.: Hydrodynamic instabilities of nematic liquid crystals under a.c. electric field. J. Physique (Paris) 32, 305–317 (1971)Google Scholar
  44. 44.
    Buka, A., Kramer, L. (eds.): Pattern Formation in Liquid Crystals. Springer, New York (1995)Google Scholar
  45. 45.
    Heilmeier, G., Zanoni, L.A., Barton, L.A.: Dynamic scattering: a new electrooptic effecting certain classes of nematic liquid crystals. Proc. I.E.E.E 56, 1162–1171 (1968)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Russian Academy of Sciences Inst. CrystallographyMoscowRussia

Personalised recommendations