Early Life Record from Nitrogen Isotopes

Chapter

Abstract

Biological activity fractionates the nitrogen isotopes in a peculiar way, making them a reliable biosignature and an accurate paleoenvironmental proxy. Nitrogen has been ignored for long time, being extremely fragile compared to the more stable graphitic forms of C; however, N has an advantage over other isotopic systems such as those of C and S. The dominant source of N at the surface of the Earth, that is, the atmospheric triple-bonded N2, is so stable that only a very limited number of metabolic processes can bridge the abiotic and biotic world. Therefore we can draw relatively simple flux models for N. In this contribution, we review the N isotopic record in the last 4 billions years. Large isotopic shifts recorded by nitrogen are related to specific metabolic changes as a direct response to major environmental stress such as the rise of oxygen in the atmosphere and the evolution of nitrifiers and denitrifiers in the ocean. These isotopic changes are not unique but well correlated with those of C and Fe, indicating that nitrogen can be successfully used for modeling the interplay of changing microbial metabolisms over Earth’s history and relate them to precise environmental changes.

Keywords

Nitrogen isotopes Isotopic biomarkers Biological fixation Nitrification Denitrification Ammonium Cherts Great Oxygenation Event 

References

  1. Ader M, Cartigny P, Boudou JP et al (2006) Nitrogen isotopic evolution of carbonaceous matter during metamorphism: methodology and preliminary results. Chem Geol 232:152–169CrossRefGoogle Scholar
  2. Altabet MA (1988) Variations in nitrogen isotopic composition between sinking and suspended particles: implications for nitrogen cycling and particle transformation in the open-ocean. Deep-Sea Res 35:535–554CrossRefGoogle Scholar
  3. Altabet MA, Francois R (1994) Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochem Cycles 8:103–116CrossRefGoogle Scholar
  4. Altabet MA, Higginson MJ, Murray DW (2002) The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2. Nature 415:159–162CrossRefGoogle Scholar
  5. Barker DS (1964) Ammonium in alkali feldspars. Am Mineral 49:851–858Google Scholar
  6. Beard BL, Johnson CM, Skulan JL et al (2003) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem Geol 196:43–56CrossRefGoogle Scholar
  7. Beaumont V, Robert F (1999) Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? Precambr Res 96:63–82CrossRefGoogle Scholar
  8. Bebout GE, Fogel ML (1992) Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California: implications for metamorphic devolatilization history. Geochim Cosmochim Acta 56:2839–2849CrossRefGoogle Scholar
  9. Bjerrum CJ, Canfield DE (2004) New insights into the burial history of organic carbon on the early Earth. Geochem Geophys Geosyst. doi:10.1029/2004GC000713Google Scholar
  10. Boudou JP, Schimmelmann A, Ader M, Mastalerz M, Sebilo M, Gengembre L (2008) Organic nitrogen chemistry during low-grade metamorphism. Geochim Cosmochim Acta 72:1199–1221CrossRefGoogle Scholar
  11. Boyd SR (2001) Ammonium as a biomarker in Precambrian metasediments. Precambr Res 108:159–173CrossRefGoogle Scholar
  12. Boyd SR, Philippot P (1998) Precambrian ammonium biogeochemistry: a study of the Moine metasediments, Scotland. Chem Geol 144:257–268CrossRefGoogle Scholar
  13. Boyd SR, Hall A, Pillinger CT (1993) The measurement of δ15N in crustal rocks by static vacuum mass-spectrometry – application to the origin of the ammonium in the Cornubian Batholith, Southwest England. Geochim Cosmochim Acta 57:1339–1347CrossRefGoogle Scholar
  14. Brandes JA, Devol AH, Deutsch C (2007) New developments in the marine nitrogen cycle. Chem Rev 107:577–589CrossRefGoogle Scholar
  15. Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81CrossRefGoogle Scholar
  16. Busigny V, Cartigny P, Philippot P et al (2003) Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP oceanic metasediments of the Schistes Lustres nappe (western Alps, Europe). Earth Planet Sci Lett 215:27–42CrossRefGoogle Scholar
  17. Busigny V, Laverne C, Bonifacie M (2005) Nitrogen content and isotopic composition of oceanic crust at a superfast spreading ridge: a profile in altered basalts from ODP Site 1256, Leg 206. Geochem Geophys Geosyst. doi:10.1029/2005GC001020Google Scholar
  18. Cartigny P, Harris JW, Javoy M (2001) Diamond genesis, mantle fractionations and mantle nitrogen content: a study of δ13C-N concentrations in diamonds. Earth Planet Sci Lett 185:85–98CrossRefGoogle Scholar
  19. Casciotti KL, Sigman DM, Ward BB (2003) Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria. Geomicrobiol J 20:335–353CrossRefGoogle Scholar
  20. Cline JD, Kaplan IR (1975) Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pacific Ocean. Mar Chem 3:271–299CrossRefGoogle Scholar
  21. Conway NM, Kennicutt MC, Van Dover CL (1994) Stable isotopes in the study of marine chemosynthetic-based ecosystems. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell, OxfordGoogle Scholar
  22. David P. Summers (1999) Sources and sinks for ammonia and nitrite on the early Earth and the reaction of nitrite with ammonia. Origins of Life and Evolution of the Biosphere 29:33–46CrossRefGoogle Scholar
  23. Dauphas N, Marty B (2004) “A large secular variation in the nitrogen isotopic composition of the atmosphere since the Archaean?”: response to a comment on “The nitrogen record of crust-mantle interaction and mantle convection from Archaean to Present” by R Kerrich and Y Jia. Earth Planet Sci Lett 225:441–450CrossRefGoogle Scholar
  24. Duit W, Jansen JBH, Van Breemen A et al (1986) Ammonium micas in metamorphic rocks as exemplified by Dome de l’Agout (France). Am J Sci 286:702–732CrossRefGoogle Scholar
  25. Fogel ML, Cifuentes LA (1993) Isotope fractionation during primary production. In: Engels MH, Macko SA (eds) Organic geochemistry. Plenum, New YorkGoogle Scholar
  26. Freudenthal T, Wagner T, Wenzhofer F et al (2001) Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes. Geochim Cosmochim Acta 65:1795–1808CrossRefGoogle Scholar
  27. Gallien J-P, Orberger B, Daudin L et al (2004) Nitrogen in biogenic and abiogenic minerals from Paleozoic black shales: an NRA study. Nucl Instrum Meth Phys Res B 217:113–122CrossRefGoogle Scholar
  28. Galloway J (2003) The global nitrogen cycle. Treat Geochem 8:557–583CrossRefGoogle Scholar
  29. Garvin J, Buick R, Anbar A et al (2009) Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323:1045–1048CrossRefGoogle Scholar
  30. Gilmour I (2003) Structural and isotopic analysis of organic matter in carbonaceous chondrites. Treat Geochem 1:269–290CrossRefGoogle Scholar
  31. Glikson M, Duck LJ, Golding SD et al (2008) Microbial remains in some earliest Earth rocks: comparison with a potential modern analogue. Precambr Res 164:187–200CrossRefGoogle Scholar
  32. Haendel D, Mühle K, Nitzsche H-M, Stiehl G, Wand U (1986) Isotopic variations of the fixed nitrogen in metamorphic rocks. Geochim Cosmochim Acta 50:749–758CrossRefGoogle Scholar
  33. Hall A (1999) Ammonium in granites and its petrogenetic significance. Earth Sci Rev 45:145–165CrossRefGoogle Scholar
  34. Hanschamn G (1981) Berechnung von Isotopieeffekten auf quantenchemischer Grundlage am Beispiel stick-stoffhaltiger Moleküle. Zfi-Mitt 41:19–39Google Scholar
  35. Hashizume K, Soyama H, Cloquet C et al (2008) Covariation of nitrogen and iron isotopic ratios in a banded iron formation. Geochim Cosmochim Acta 72(suppl 1):A356Google Scholar
  36. Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic geochemistries, preservation of the record. In: Schopf WJ (ed) Earth’s earliest biosphere. Cambridge University Press, CambridgeGoogle Scholar
  37. Hayes JM, Takigiku R, Ocampo R, Callot HJ, Albrecht P. (1987). Isotopic compositions and probable origin of organic molecules in the Eocene Messle shale. Nature 329:48–51CrossRefGoogle Scholar
  38. Hoefs J (2004) Stable isotope geochemistry. Springer, BerlinCrossRefGoogle Scholar
  39. Holloway JM, Dahlgren RA (1999) Geologic nitrogen in terrestrial biogeochemical cycling. Geology 27:567–570CrossRefGoogle Scholar
  40. Honma H, Itihara Y (1981) Distribution of ammonium in minerals of metamorphic and granitic rocks. Geochim Cosmochim Acta 45:983–988CrossRefGoogle Scholar
  41. Humphris SE, Thompson G (1978) Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim Cosmochim Acta 42:127–136CrossRefGoogle Scholar
  42. Javoy M (1998) The birth of the Earth’s atmosphere: the behaviour and fate of its major elements. Chem Geol 147:11–25CrossRefGoogle Scholar
  43. Jia Y (2006) Nitrogen isotope fractionations during progressive metamorphism: a case study from the Paleozoic Cooma metasedimentary complex, southeastern Australia. Geochim Cosmochim Acta 70:5201–5214CrossRefGoogle Scholar
  44. Jia Y, Kerrich R (2004a) Nitrogen 15–enriched Precambrian kerogen and hydrothermal systems. Geochem Geophys Geosyst. doi:07010.01029/02004GC000716Google Scholar
  45. Jia Y, Kerrich R (2004b) A reinterpretation of the crustal N-isotope record: evidence for a 15N-enriched Archean atmosphere? Terra Nova 16:102–108CrossRefGoogle Scholar
  46. Johnson C, Beard B, Roden E (2008) The iron isotope fingerprints of redox and biogeochemical cycling in the modern and ancient Earth. Annu Rev Earth Planet Sci 36:457–493CrossRefGoogle Scholar
  47. Kerrich R, Jia Y, Manikyamba C et al (2006) Secular variations of N-isotopes in terrestrial reservoirs and ore deposits. In: Kesler SE, Ohmoto H (eds) Evolution of early Earth’s atmosphere, hydrosphere, and biosphere–constraints from ore deposits. Geological Society of America, Boulder, CO, Memoir 198Google Scholar
  48. Kuypers MMM, Sliekers AO, Lavik G et al (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611CrossRefGoogle Scholar
  49. Lehmann MF, Bernasconi SM, Barbieri A et al (2002) Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 66:3573–3584CrossRefGoogle Scholar
  50. Lehmann MF, Sigman DM, Berelson WM (2004) Coupling the 15N/14N and 18O/16O of nitrate as a constraint on benthic nitrogen cycling. Mar Chem 88:1–20CrossRefGoogle Scholar
  51. López-Garcia P, Moreira D, Douzery E et al (2006) Ancient fossil record and early evolution (ca. 3.8 to 0.5 Ga). Earth Moon Planet 98:247–290CrossRefGoogle Scholar
  52. Macko SA, Engel MH (1993) Organic geochemistry: principles and applications. Plenum, New YorkGoogle Scholar
  53. Mariotti A, Germon JC, Hubert P et al (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62:413–430CrossRefGoogle Scholar
  54. Mehta MP, Baross JA (2006) Nitrogen fixation at 92°C by a hydrothermal vent archaeon. Science 314:1783–1786CrossRefGoogle Scholar
  55. Mingram B, Brauer K (2001) Ammonium concentration and nitrogen isotope composition in metasedimentary rocks from different tectonometamorphic units of the European Variscan Belt. Geochim Cosmochim Acta 65:273–287CrossRefGoogle Scholar
  56. Mojzsis SL, Arrhenius G, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–57CrossRefGoogle Scholar
  57. Morikiyo T (1984) Carbon isotopic study on coexisting calcite and graphite in the Ryoke metamorphic rocks, northern Kiso district, central Japan. Contrib Mineral Petrol 87:251–259CrossRefGoogle Scholar
  58. Murray JW, Codispoti LA, Friederich GE (1995) Oxidation-reduction environments: the suboxic zone in the Black Sea. In: Huang CP, O’Melia CR, Morgan JJ (eds) Aquatic chemistry: interfacial and interspecies processes. American Chemical Society, Washington, DCGoogle Scholar
  59. Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091CrossRefGoogle Scholar
  60. Nishizawa M, Sano Y, Ueno Y, Maruyama S (2007) Speciation and isotope ratios in fluid ­inclusions from seafloor hydrothermal deposits at ca. 3.5 Ga. Earth Planet Sci Lett 254:332–344CrossRefGoogle Scholar
  61. Ohmoto H (1997) When did the Earth’s atmosphere become oxic? Geochem News 93(12–13):26–27Google Scholar
  62. Orberger B, Gallien J-P, Pinti DL et al (2005) Nitrogen and carbon partitioning in diagenetic and hydrothermal minerals from Paleozoic Black Shales (Selwyn Basin, Yukon Territories, Canada). Chem Geol 218:249–264CrossRefGoogle Scholar
  63. Papineau D, Mojzsis SJ, Karhu JA et al (2005) Nitrogen isotopic composition of ammoniated phyllosilicates: case studies from Precambrian metamorphosed sedimentary rocks. Chem Geol 216:37–58CrossRefGoogle Scholar
  64. Papineau D, Purohit R, Goldberg T et al (2009) High primary productivity and nitrogen cycling after the Paleoproterozoic phosphogenic event in the Aravalli Supergroup, India. Precambr Res 171:37–56CrossRefGoogle Scholar
  65. Peters KE, Sweeney RE, Kaplan IR (1978) Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol Oceanogr 23:598–604CrossRefGoogle Scholar
  66. Pinti DL (2002) The isotopic record of Archean nitrogen and the evolution of the early earth. Trends Geochem 2:1–17Google Scholar
  67. Pinti DL, Hashizume K (2001) N-15-depleted nitrogen in Early Archean kerogens: clues on ancient marine chemosynthetic-based ecosystems? Precambr Res 105:85–88CrossRefGoogle Scholar
  68. Pinti DL, Hashizume K (2008) δ15N-δ13C Covariations in organic matter through eons: tracing the evolution of metabolic pathways. Geochim Cosmochim Acta 72(Suppl 1):A751Google Scholar
  69. Pinti DL, Hashizume K, Matsuda J (2001) Nitrogen and argon signatures in 3.8 to 2.8 Ga metasediments: clues on the chemical state of the Archean ocean and the deep biosphere. Geochim Cosmochim Acta 65:2301–2315CrossRefGoogle Scholar
  70. Pinti DL, Hashizume K, Orberger B et al (2007) Biogenic nitrogen and carbon in Fe-Mn-oxyhydroxides from an Archean chert, Marble Bar, Western Australia. Geochem Geophys Geosyst. doi:10.1029/2006GC001394Google Scholar
  71. Pinti DL, Hashizume K, Sugihara A et al (2009a) Isotopic fractionation of nitrogen and carbon in Paleoarchean cherts from Pilbara Craton, Western Australia: origin of 15N-depleted nitrogen. Geochim Cosmochim Acta 73:3819–3848CrossRefGoogle Scholar
  72. Pinti DL, Mineau R, Clement V (2009b) Hydrothermal alteration and microfossils artefacts of the 3,465-million-year-old Apex chert. Nat Geosci 2, 640–643 10.1038/NGEO601CrossRefGoogle Scholar
  73. Pitcairn IK, Teagle DAH, Kerrich R et al (2005) The behavior of nitrogen and nitrogen isotopes during metamorphism and mineralization: evidence from the Otago and Alpine Schists, New Zealand. Earth Planet Sci Lett 233:229–246CrossRefGoogle Scholar
  74. Prokopenko MG, Hammond DE, Spivack A et al (2005) Impact of long-term diagenesis on 15N of organic matter in marine sediments: sites 1227 and 1230. In: BB Jørgensen, SL D’Hondt, DJ Miller (eds) Proceedings of the ocean drilling program, scientific results, vol 201. College Station, TX, pp 1–30Google Scholar
  75. Prokopenko M, Hammond DE, Berelson W et al (2006) Nitrogen cycling in the sediments of Santa Barbara basin and Eastern Subtropical North Pacific: nitrogen isotopes, diagenesis and possible chemosymbiosis between two lithotrophs (Thioploca and Anammox)–“riding on a glider”. Earth Planet Sci Lett 242:186–204CrossRefGoogle Scholar
  76. Raymond J (2003) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554CrossRefGoogle Scholar
  77. Rosing M, Bird D, Sleep N et al (2006) The rise of continents–an essay on the geologic consequences of photosynthesis. Palaeogeogr Palaeoclimatol Palaeoecol 232:99–113CrossRefGoogle Scholar
  78. Rouchon V, Pinti DL, Gallien JP et al (2005) NRA analyses of N and C in hydromuscovite aggregates from a 3.5 Ga chert from Kittys Gap, Pilbara, Australia. Nucl Instrum Methods Phys Res Sec B 231:536–540CrossRefGoogle Scholar
  79. Sadofsky SJ, Bebout GE (2000) Ammonium partitioning and nitrogen-isotope fractionation among coexisting micas during high-temperature fluid-rock interactions: examples from the New England Appalachians. Geochim Cosmochim Acta 64:2835–2849CrossRefGoogle Scholar
  80. Sano Y, Pillinger CT (1990) Nitrogen isotopes and N2/Ar ratios in cherts: an attempt to measure time evolution of atmospheric δ15N value. Geochem J 24:315–325CrossRefGoogle Scholar
  81. Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambr Res 106:117–134CrossRefGoogle Scholar
  82. Schidlowski M, Hayes JM, Kaplan IR (1983) Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen. In: Schopf WJ (ed) Earth’s earliest biosphere. Princeton University Press, Princeton, NJGoogle Scholar
  83. Scholten SO (1991) The distribution of nitrogen isotopes in sediments. Geol Ultraiectina 81:101, ppGoogle Scholar
  84. Schopf WJ (2006) Fossil evidence of Archaean life. Phil Trans R Soc B 361:869–885CrossRefGoogle Scholar
  85. Schopf WJ, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76CrossRefGoogle Scholar
  86. Shen Y, Pinti DL, Hashizume K (2006) Biogeochemical cycles of sulfur and nitrogen in the Archean ocean and atmosphere. In: K Benn, JC Mareschal, KC Condie (eds) Archean geodynamics and environments. AGU Geophys Monogr 164Google Scholar
  87. Sherwood-Lollar B, McCollom TM (2006) Biosignatures and abiotic constraints on early life. Nature 444:E18. doi:10.1038/nature05499CrossRefGoogle Scholar
  88. Sigman DM, Robinson R, Knapp AN et al (2003) Distinguishing between water column and sedimentary denitrification in the Santa Barbara Basin using the stable isotopes of nitrate. Geochem Geophys Geosyst 4:1040. doi:10.1029/2002GC000384CrossRefGoogle Scholar
  89. Sigman DM, Kash KL, Casciotti KL (2009) Ocean process tracers: nitrogen isotopes in the ocean. In: Steele JH, Turekian KK, Thorpe SA (eds) Encyclopedia of ocean science, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  90. Stevenson FJ (1962) Chemical state of the nitrogen in rocks. Geochim Cosmochim Acta 26:797–809CrossRefGoogle Scholar
  91. Strous M, Kuenen JG, Fuerst JA, Wagner M (2002) The anammox case–a new experimental manifesto for microbiological eco-physiology. Antonie Leeuwenhoek 81:693–702CrossRefGoogle Scholar
  92. Svensen H, Bebout GE, Kronz A et al (2008) Nitrogen geochemistry as a tracer of fluid flow in a hydrothermal vent complex in the Karoo Basin, South Africa. Geochim Cosmochim Acta 72:4929–4947CrossRefGoogle Scholar
  93. Thomazo C, Pinti DL, Busigny V, Ader M, Hashizume K, Philippot P (2009) Biological activity and Earth’s surface evolutions: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. Comptes Rendus Palevol. doi:10.1016/j.crpv.2009.02.003Google Scholar
  94. Thornton SF, McManus J (1994) Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay estuary, Scotland. Estuar Coast Shelf Sci 38:219–233CrossRefGoogle Scholar
  95. Ueno Y, Yurimoto H, Yoshioka H, Komiya T, Maruyama S (2002) Ion microprobe analysis of graphite from ca. 3.8 Ga metasediments, Isua supracrustal belt, West Greenland: relationship between metamorphism and carbon isotopic composition. Geochim Cosmochim Acta 66:1257–1268CrossRefGoogle Scholar
  96. Ueno Y, Yoshioka H, Maruyama S et al (2004) Carbon isotopes and petrography of kerogens in similar to 3.5-Ga hydrothermal silica dikes in the North Pole area, Western Australia. Geochim Cosmochim Acta 68:573–589CrossRefGoogle Scholar
  97. Ueno Y, Yamada K, Yoshida N et al (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519CrossRefGoogle Scholar
  98. Valley JW, O’Neil JR (1981) 13C/12C exchange between calcite and graphite: a possible thermometer in Grenville marbles. Geochim Cosmochim Acta 45:411–419CrossRefGoogle Scholar
  99. van Zuilen MA, Lepland A, Arrhenius G (2002) Reassessing the evidence for the earliest traces of life. Nature 418:627–630CrossRefGoogle Scholar
  100. van Zuilen MA, Mathew K, Wopenka B et al (2005) Nitrogen and argon isotopic signatures in graphite from the 3.8-Ga-old Isua Supracrustal Belt, Southern West Greenland. Geochim Cosmochim Acta 69:1241–1252CrossRefGoogle Scholar
  101. Williams LB, Ferrell RE Jr, Hutcheon I et al (1995) Nitrogen isotope geochemistry of organic matter and mineral during diagenesis and hydrocarbon migration. Geochim Cosmochim Acta 59:765–779CrossRefGoogle Scholar
  102. Wlotzka F (1969) Nitrogen. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, BerlinGoogle Scholar
  103. Yamaguchi K (2002) Geochemistry of Archean-Paleoproterozoic black shales: the early evolution of atmosphere, oceans and biosphere. PhD thesis, Pennsylvania State University, PennsylvaniaGoogle Scholar
  104. Zerkle A, Junium C, Canfield D et al (2008) Production of 15N-depleted biomass during cyanobacterial N2-fixation at high Fe concentrations. J Geophys Res 113:1–9CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.GEOTOP and Département des Sciences de la Terre et de l’AtmosphèreUniversité du Québec à MontréalMontréalCanada
  2. 2.Department of Earth & Space Sciences, Graduate School of ScienceOsaka UniversityToyonakaJapan

Personalised recommendations