Materials Surface Effects on Biological Interactions

  • Josep A. Planell
  • Melba Navarro
  • George Altankov
  • Conrado Aparicio
  • Elisabeth Engel
  • Javier Gil
  • Maria Pau Ginebra
  • Damien Lacroix
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

At present it is well accepted that different surface properties play a strong role in the interaction between synthetic materials and biological entities. Surface properties such as surface energy, topography, surface chemistry and crystallinity affect the protein adsorption mechanisms as well as cell behaviour in terms of attachment, proliferation and differentiation. The aim of this chapter is to show the most relevant processes and interactions that take place during the first stages of contact between the material and the physiological environment. Some examples show that the modification of different biomaterials surfaces affects both protein adsorption and cell behaviour.

Keywords

Surface properties Topography Surface chemistry Cell–material interactions 

References

  1. Adriano KP, Daniels AU, Smutz WP, Wyatt RWB, Heller J (1993) Preliminary biocompatibility screening of several biodegradable phosphate fiber reinforced polymers. J Appl Biomater 4:1–12CrossRefGoogle Scholar
  2. Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55:141–150CrossRefGoogle Scholar
  3. Altankov G, Groth T (1994) Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. J Mater Sci Mater Med 5:732–737CrossRefGoogle Scholar
  4. Anderson JM, Gristina AG, Hanson SR, Harker LA, Johnson RJ, Merrit K, Naylor PT, Schoen FJ (1996) Host reactions to biomaterials and their evaluation. In: Ratner BD, Horffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Academic, San Diego, CA, pp 127–146Google Scholar
  5. Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21(7):667–681CrossRefGoogle Scholar
  6. Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P (2000) Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 49:155–166CrossRefGoogle Scholar
  7. Aparicio C, Gil F, Fonseca C, Barbosa M, Planell JA (2003) Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials 24:263–273CrossRefGoogle Scholar
  8. Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20:1055–1060CrossRefGoogle Scholar
  9. Beningo KA, Dembo M, Kaverina I, Small JA, Wang YL (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153(4):881–887CrossRefGoogle Scholar
  10. Black J (2006) Biocompatibility: definitions and issues. In: Black J (ed) Biological performance of materials, 4th edn. Taylor & Francis, Boca Raton, FL, p 6Google Scholar
  11. Blawas AS, Reichert WM (1998) Protein patterning. Biomaterials 19(7–9):595–609CrossRefGoogle Scholar
  12. Boyan BD, Dean DD, Lohmann CH, Cochran DL, Sylvia VL, Schwartz Z (2001) The titanium-bone cell interface in vitro: the role of the surface in promoting osteointegration. In: Brunette D, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine. Springer, Berlin, pp 562–585Google Scholar
  13. Charest JL, Garcia AJ, King WP (2007) Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials 28(13):2202–2210CrossRefGoogle Scholar
  14. Charles-Harris M, Navarro M, Engel E, Aparicio C, Ginebra MP, Planell JA (2005) Surface characterisation of completely degradable composite scaffolds. J Mater Sci Mater Med 16:1125–1130CrossRefGoogle Scholar
  15. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428CrossRefGoogle Scholar
  16. Chesnel KD, Clark CC, Brighton CT, Black J (1995) Cellular responses to chemical and morphologic aspect of biomaterial surfaces 2: the biosynthetic and migratory response of bone cell-populations. J Biomed Mater Res 29:110–1110Google Scholar
  17. Chim H, Schantz JT (2006) Human circulating peripheral blood mononuclear cells for calvarial bone tissue engineering. Plast Reconstr Surg 117(2):468–478CrossRefGoogle Scholar
  18. Ciccone W, Motz C, Bentley C, Tasto J (2001) Bioabsorbable implants in orthopaedics: new developments and clinical applications. J Am Acad Orthop Surg 9:280–288Google Scholar
  19. Colloioud A, Clemence JF, Sanger M, Sigrist H (1993) Oriented and covalent immobilization of target molecules to solid supports: synthesis and application of a light-activatable and thiol-reactive crosslinking reagent. Bioconjugate Chem 4:528–536CrossRefGoogle Scholar
  20. Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18:1573–1583CrossRefGoogle Scholar
  21. Dalby MJ, Giannaras D, Riehle MO, Gadegaard N, Affrossman S, Curtis ASG (2004) Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography. Biomaterials 25:77–83CrossRefGoogle Scholar
  22. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle M, Herzyk P, Wilkinson C, Oreffo R (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6:997–1003CrossRefGoogle Scholar
  23. Dee KC, Puleo DA, Bizios R (2002) Wound healing. In: Dee KC, Puleo DA, Bizios R (eds) An introduction to tissue-biomaterial interactions. Wiley, Hoboken, NJ, pp 165–214CrossRefGoogle Scholar
  24. Diener A, Nebe B, Lüthen F, Becker P, Beck U, Neumann H, Rychly J (2005) Control of focal adhesion dynamics by material surface characteristics. Biomaterials 26(4):383–392CrossRefGoogle Scholar
  25. Dunlap CL, Vincent SK, Barker BF (1989) Allergic reaction to orthodontic wire: report of case. JADA 118:449–450Google Scholar
  26. Fernyhough JC, Schimandle JJ, Weigel MC, Edwards CC, Levine AM (1992) Chronic donor site pain complicating bone graft harvest from the posterior iliac crest for spinal fusion. Spine 17:1474–1480CrossRefGoogle Scholar
  27. Fuchs JR, Hannouche D, Terada S, Zand S, Vacanti JP, Fauza DO (2005) Cartilage engineering from ovine umbilical cord blood mesenchymal progenitor cells. Stem Cells 23(7):958–964CrossRefGoogle Scholar
  28. Gadegaard N (2006) Atomic force microscopy in biology: technology and techniques. Biotech Histochem 81(2–3):87–97CrossRefGoogle Scholar
  29. Goulet JA, Senunas LE, DeSilva GL, Greengield MLVH (1997) Autogeneous iliac crest bone graft. Complications and functional assessment. Clin Orthop 339:76–81CrossRefGoogle Scholar
  30. Grinnel F, Feld MK (1982) Adsorbtion characteristics of plasma fibronectin in relationship to biological-activity. J Biomed Mater Res 15:363–381CrossRefGoogle Scholar
  31. Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. Biomaterials 16(4):305–311CrossRefGoogle Scholar
  32. Gronowicz G, McCarthy MB, Ahmad M (1996) Direct integrin-mediated attachment of juman osteoblasts to implants. J Bone Miner Res 11:S323Google Scholar
  33. Hardouin P, Anselme K, Flautre B, Bianchi F, Bascoulenguet G, Bouxin B (2000) Tissue engineering and skeletal diseases. Joint Bone Spine 67:419–424Google Scholar
  34. Healy KE, Thomas CH, Rezania A, Kim JE, McKeown PJ, Lom B, Hockberger PE (1996) Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. Biomaterials 17:195–208CrossRefGoogle Scholar
  35. Hench LL (1980) Biomaterials. Science 208:826–831CrossRefGoogle Scholar
  36. Hench LL, Anderson Ö (1993) Bioactive glasses. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Hackensack, NJ, p 41CrossRefGoogle Scholar
  37. Hench LL, Polak J (2002) Third generation biomedical materials. Science 295:1014–1017CrossRefGoogle Scholar
  38. Howlet CR, Evans MDM, Walsh WR, Johnson G, Steele JG (1994) Mechanism of initial attachment of cells derived from human bone to commonly used prosthetic materials during cell-culture. Biomaterials 15:213–222CrossRefGoogle Scholar
  39. Huang YC, Huang YY (2006) Biomnaterials and strategies for nerve regeneration. Artif Organs 30(7):514–522CrossRefGoogle Scholar
  40. Huang HH, Ho CT, Lee TH, Lee TL, Liao KK, Chen FL (2004) Effect of surface roughness of ground titanium on initial cell adhesion. Biomol Eng 21(3–5):93–97CrossRefGoogle Scholar
  41. Hunt J (2004) Foreign body response. In: Wnek GE, Bowlin GL (eds) Encyclopedia of biomaterials and biomedical engineering. Marcel Dekker, New York, pp 641–646Google Scholar
  42. Hutmacher D, Hürzeler MB, Schliephake H (2000) A review of material properties of biodegradable and bioresorbable polymer for GTR and GBR. J Oral Maxillofac Implants 11:667–678Google Scholar
  43. Johansson F, Carlberg P, Danielsen N, Montelius L, Kanje M (2006) Axonal outgrowth on nano-imprinted patterns. Biomaterials 27(8):1251–1258CrossRefGoogle Scholar
  44. Kasuga T, Maeda H, Kato K, Nogami M, Hata KI, Ueda M (2003) Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials 24:3247–3253CrossRefGoogle Scholar
  45. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchyal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5): 1294–1301CrossRefGoogle Scholar
  46. Kulkarni R, Pani KC, Neuman C, Leonard F (1966) Polylactic acid for surgical implants. Archives Surg 93:839CrossRefGoogle Scholar
  47. Kulkarni R, Moore RG, Hegyeli AF, Leonard F (1971) Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 5:169–181CrossRefGoogle Scholar
  48. Larsson C, Thomsen P, Aronsson BO, Rodahl M, Lausmaa J, Kasemo B, Ericson LE (1996) Bone response to surface-modified titanium implants: studies on the early tissue response machined and electropolished implants with different oxides thicknesses. Biomaterials 17:605–616CrossRefGoogle Scholar
  49. Magel S, Vogler EA, Firment L, Watt T, Haynie S, Sogah DY (1993) Peptide, protein and cellular interactions with self-assembled monolayer model surfaces. J Biomed Mater Res 27(12):1463–1476CrossRefGoogle Scholar
  50. Martínez E, Ríos-Mondragón I, Pla-Roca M, Rodríguez-Segui S, Engel E, Mills CA, Sisquella X, Planell JA, Samitier J (2007) Cell-surface interactions studies to trigger stem cell differentiation. Nanomedicine 3(4):346–346Google Scholar
  51. McFarland CD, Mayer S, Scotchford C, Dalton BA, Steele JG, Downes S (1999) Attachment of cultured human bone cells to novel polymers. J Biomed Mater Res 44(1):1–11CrossRefGoogle Scholar
  52. Meyer O, Buchter A, Wiesmann HP, Joos U, Jones DB (2005) Basic reactions of osteoblasts on structured material surfaces. ECMjournal 9:39–49Google Scholar
  53. Michiardi A, Aparicio C, Planell JA, Gil FJ (2004) Nuevo tratamiento de oxidación en aleaciones de NiTi para la disminución de la liberación de iones y la mejora de la biocompatibilidad. Spanish Patent no P2004024004Google Scholar
  54. Michiardi A, Aparicio C, Planell JA, Gil FJ (2006) New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J Biomed Mater Res 77B:249–456CrossRefGoogle Scholar
  55. Michiardi A, Aparicio C, Ratner BD, Planell JA, Gil J (2007) The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials 28:586–594CrossRefGoogle Scholar
  56. Michiardi A, Engel E, Aparicio C, Planell JA, Gil FJ (2008) Oxidized NiTi surfaces enhance differentiation of osteoblast-like cells. J Biomed Mater Res 85A:108–114CrossRefGoogle Scholar
  57. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopaedic devices. Biomaterials 21(23):2335–2346CrossRefGoogle Scholar
  58. Mills CA, Martínez R, Errachid A, Engel E, Funes M, Moormann C, Wahlbrink T, Gomila G, Planell JA, Samitier J (2007) Nanoembosed polymer substrates for biomedical surface interaction studies. J Nanosci Nanotechnol 7:4588–4594Google Scholar
  59. Mrksich M, Whitesides GM (1995) Patterning self-assembled monolayers using microcontact printing: a new technology for biosensors? TIBTECH 13:228–235CrossRefGoogle Scholar
  60. Navarro M, Ginebra MP, Clement J, Martínez S, Avila G, Planell JA (2003) Physicochemical degradation of titania-stabilized soluble phosphate glasses for medical applications. J Am Ceram Soc 86(8):1345–1352CrossRefGoogle Scholar
  61. Navarro M, Ginebra MP, Planell JA, Barrias C, Barbosa M (2005) In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomater 1:411–419CrossRefGoogle Scholar
  62. Navarro M, Engel E, Planell JA, Amaral I, Barbosa M, Ginebra MP (2008) Surface characterisation and cell response of a PLA/CaP glass biodegradable composite material. J Biomed Mater Res 85 A:477–486CrossRefGoogle Scholar
  63. Peltonen L (1979) Nickel sensitivity in general population. Contact Dermatitis 5:27–32CrossRefGoogle Scholar
  64. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mensenchymal stem cells. Science 284(5411):143–147CrossRefGoogle Scholar
  65. Roach P, Eglin D, Rohde K, Perry CC (2007) Modern biomaterials: a review-bulk properties and implications of surface modifications. J Mater Sci Mater Med 18:1263–1277CrossRefGoogle Scholar
  66. Rodríguez-Cabello JC, Prieto S, Reguera J, Arias FJ, Riberiro A (2007) Biofunctional design of elastin-like polymers for advanced applications in nanobiotechnology. J Biomater Sci Polym Ed 18(3):269–286CrossRefGoogle Scholar
  67. Rokkanen P (2000) Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials 21:2607–2613CrossRefGoogle Scholar
  68. Scotchford CA, Cooper E, Leggett GJ, Downes S (1998) Growth of human osteoblast-like cells on alkanethiol on gold self-assembled monolayers: the effects of surface chemistry. J Biomed Mater Res 41:431–442CrossRefGoogle Scholar
  69. Sergeant TD, Rao MS, Koh CY, Stupp SI (2008) Covalent functionalization on NiTi surfaces with bioactive peptide amphiphile nanofibers. Biomaterials 29(8):1085–1098CrossRefGoogle Scholar
  70. Siebers MC, Brugge PJ, Wlaboomers XF, Jansen JA (2005) Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials 26(2):137–146Google Scholar
  71. Stoltz JF, Bensoussan D, Decot V, Netter P, Ciree A, Gillet P (2006) Cell and tissue engineering and clinical applications: an overview. Biomed Mater Eng 16(4):S3–S18Google Scholar
  72. Tan J, Saltzman WM (2002) Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry. Biomaterials 23(15):3215–3225CrossRefGoogle Scholar
  73. Tang L, Liu L, Elwing HB (1998) Complement activation and inflammation triggered by model biomaterial surfaces. J Biomed Mater Res 41(2):333–340CrossRefGoogle Scholar
  74. Teixeira A, Duckworth JK, Hermanson O (2007) Getting the right stuff: controlling neural stem cell state and fate in vivo and in vitro with biomaterials. Cell Res 17(1):56–61CrossRefGoogle Scholar
  75. Temenoff JS, Mikos AG (2000) Tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440CrossRefGoogle Scholar
  76. Verfaillie CM (2002) Adult stem cells: assessing the case for pluripontency. Trends Biotechnol 12(11):502–508Google Scholar
  77. Wataha JC, O’Dell NL, Singh BB, Ghazi M, Whitford GM, Lockwood pE (2001) Relating nickel-induced tissue inflammation to nickel release in vivo. J Biomed Mater Res B Appl Biomater 58:537–544CrossRefGoogle Scholar
  78. Wilkinson CDW, Riehle M, Wood M, Gallagher J, Curtis ASG (2002) The use of materials patterned on a nano-and micro-metric scale in cellular engineering. Mater Sci Eng C 14:263–269CrossRefGoogle Scholar
  79. Xiao SJ, Textor M, Spencer ND, Wieland M, Keller B, Sigrist H (1998) Covalent attachment of cell-adhesive peptides containing (arg-gly-asp) sequences to titanium surfaces. Langmuir 14:5507–5516CrossRefGoogle Scholar
  80. Xiao SJ, Kenausis G, Textor M (2001) Biochemical modification of titanium surfaces. Springer, BerlinGoogle Scholar
  81. Zinger O, Zhao G, Schwartz Z, Simpson J, Weiland M, Landolt D, Boyan B (2005) Differential regulation of osteoblast by susbstrate microstructural features. Biomaterials 26(14):1837–1347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Josep A. Planell
    • 1
  • Melba Navarro
  • George Altankov
  • Conrado Aparicio
    • 1
  • Elisabeth Engel
    • 1
  • Javier Gil
    • 1
  • Maria Pau Ginebra
    • 1
  • Damien Lacroix
  1. 1.Technical Univerity of Catalonia (UPC)BarcelonaSpain

Personalised recommendations