Ecosystem Manipulation and Restoration on the Basis of Long-Term Conceptions

  • Oliver DillyEmail author
  • Seth Nii-Annang
  • Joachim Schrautzer
  • Peter Schwartze
  • Vera Breuer
  • Eva-Maria Pfeiffer
  • Werner Gerwin
  • Wolfgang Schaaf
  • Dirk Freese
  • Maik Veste
  • Reinhard F. Hüttl


Ecosystems are affected by anthopogenic activities at a global level and, thus, are manipulated world-wide. This chapter addresses the impacts of apparent and non-apparent manipulations and restoration by human activities in Europe with a focus on the temperate zone. Agricultural management practices induced evident site-specific modification of natural ecosystem structures and functions whereas forests and natural grasslands and also aquatic systems are considered as being less manipulated. Ecosystems such as mires, northern wetlands and the tundra, have received attention due to their vulnerability for conserving carbon and biodiversity and for identifying the role of non-apparent manipulations on ecosystem functioning. Drastic types of ecosystem manipulation include open-cast mining activities that occur worldwide and induce perturbation of large areas across landscapes. Such harsh human impacts create the need for remediation and restoration measures for mining regions that address classical food and fodder services and also nature conservation and novel social benefits. Recultivation therefore offers the opportunity to introduce new land-use types and to study processes of initial ecosystem development that are still poorly understood.


Ecosystem management practices Human impact Rehabilitation Open-cast mining 



This work was supported by the Integrated EU Project “Sustainability Impact Assessment: Tools for Environmental, Social and Economic Effects of Multifunctional Land Use in European Regions – SENSOR”, the German Research Foundation (SFB/TRR 38), the Brandenburg Ministry for Science, Research and Culture and Vattenfall Europe Mining AG.


  1. Aronson, J., Floret, C., LeFloćh, E., Ovalle, C., & Pontainer, R. (1993). Restoration and rehabilitation of degraded ecosystems in arid and semi-arid lands. I. A view from the south. Restoration Ecology, 1, 8–17.CrossRefGoogle Scholar
  2. Breckle, S. W., Veste, M., & Wucherer, W. (Eds.) (2001). Sustainable land-use in deserts. Heidelberg, Berlin, New York: Springer.Google Scholar
  3. COM. (2006). Halting the loss of biodiversity by 2010 – and beyond. Sustaining ecosystem services for human well–being. Communication from the Commission of the European Communities to the Council and the European Parliament 216. Retrieved from
  4. Costanza, R., D’Arge, R., DeGroot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.CrossRefGoogle Scholar
  5. Dilly, O. (2005). Microbial energetics in soil. In: Buscot, F. & Varma, A. (Eds.), Microorganisms in soils: Roles in genesis and functions (pp. 123–138). Berlin: Springer.CrossRefGoogle Scholar
  6. Dilly, O. (2006). Evaluating soil quality in ecosystems based on modern respiratory approaches. In: Cenci, R. & Sena, F. (Eds.), Biodiversity-bioindication to evaluate soil health (pp. 59–64). Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  7. Dilly, O., Bloem, J., Vos, A., & Munch, J. (2004). Bacterial diversity during litter decomposition in agricultural soils. Applied and Environmental Microbiology, 70, 468–474.CrossRefGoogle Scholar
  8. Dilly, O., Camilleri, M., Dörrie, C., Formosa, S., Galea, R., Hallenbarter, D., et al. (2008). Key sustainability issues and the spatial classification of sensitive regions in Europe. In: Helming, K., Perez-Soba, M. & Tabbush, P. (Eds.), Sustainability impact assessment of multifunctional land use (pp. 471–494). Berlin: Springer.CrossRefGoogle Scholar
  9. Dilly, O., Doerrie, C., Schneider, B.-U., & Hüttl, R. F. (2007). Abschätzung der Folgen von Bioenergieförderung in der brandenburgischen Lausitz. Forum der Forschung, 20, 35–40.Google Scholar
  10. Dilly, O., Eschenbach, C., Kutsch, W. L., Kappen, L., & Munch, J. C. (2008). Eco-physiological key processes in agricultural and forest ecosystems. In: Fränzle, O., Kappen, L., Blume, H. P., & Dierssen, K. (Eds.), Ecosystem organization of a complex landscape: Long-term research in the Bornhöved Lake District, Germany. Ecological Studies 202 (pp. 61–81). Berlin: Springer.CrossRefGoogle Scholar
  11. Dilly, O., Winter, K., Lang, A., & Munch, J. C. (2001). Energetic eco-physiology of the soil microbiota in two landscapes of southern and northern Germany. Journal of Plant Nutrition and Soil Science, 164, 407–413.CrossRefGoogle Scholar
  12. Dilly, O., Zeihser U., Hüttl, R. F., Kendzia G., Wüstenhagen D., & Dähnert D. (2007). Perspektiven für einen modernen Weinbau in der Niederlausitz. Forum der Forschung, 20, 80–84.Google Scholar
  13. Drebenstedt, C. (1998). Planungsgrundlagen der Wiedernutz-barmachung. In: Pflug, W.(Ed.), Braunkohletagebau und Rekultivierung (pp. 487–512). Berlin: Springer.CrossRefGoogle Scholar
  14. Dupraz, C., & Liagre, F. (2008). Agroforesterie. Des arbres et des cultures. Paris: Editions France Agricole.Google Scholar
  15. EEA. (2006). Progress towards halting the loss of biodiversity by 2010. Copenhagen: European Environmental Agency.Google Scholar
  16. EEA. (2007). Europe’s environment. The fourth report. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  17. Ehrenfeld, J. G. (2000). Defining the limits of restoration: The need for realistic goals. Ecological Restoration, 8, 2–9.CrossRefGoogle Scholar
  18. Ellenberg, H., Mayr, R., & Schauermann, J. (1986). Ökosystemforschung – Ergebnisse des Solling-Projektes 1966–1986. Stuttgart: Ulmer Verlag.Google Scholar
  19. ETAP. (2007, December 01). Environmental technologies action plan. Retrieved from
  20. Ewers, R. M., & Didham, R. K. (2007). The effect of fragment shape and species’ sensitivity to habitat edges on animal population size. Conservation Biology, 21, 926–936.CrossRefGoogle Scholar
  21. Finck, P., Riecken, U., & Schröder, E. (2002). Pasture landscapes and nature conservation. New strategies for preservation of open landscapes in Europe. In: Redecker, B., Finck, P., Riecken, U., & Härdtle, W. (Eds.), Pasture landscapes and nature conservation (pp. 1–14). Berlin: Springer.CrossRefGoogle Scholar
  22. Fränzle, O., Kappen, L., Blume, H. P., & Dierssen, K. (Eds.). (2008). Ecosystem organization of a complex landscape: Long-term research in the Bornhöved Lake District, Germany. Ecological Studies 202. Berlin: Springer.Google Scholar
  23. Fritsche, W. (1999). Mikrobiologie. Jena: Gustav Fischer Verlag.Google Scholar
  24. Gollan, T., & Heindl, B. (1998). Bayreuther Institut für Terrestrische Ökosystemforschung. In: Fränzle, O., Müller, F., & Schröder, W. (Eds.), Handbuch der Ökosystemforschung. Grundlagen und Anwendungen der Ökosystemforschung. V-4.6 (pp. 1–18). Landsberg: Ecomed.Google Scholar
  25. Górny, A. G., & Garczynski, S. (2002). Genotypic and nutrition-dependent variation in water use efficiency and photosynthetic activity of leaves in winter wheat (Triticum aestivum L.). Journal of Applied Genetics, 43, 145–160.Google Scholar
  26. Grünewald, U. (2001). Water resources management in river catchments influenced by lignite mining. Ecological engineering, 17, 143–152.CrossRefGoogle Scholar
  27. Grünewald, H., Brandt, B. K. V., Schneider, B. U., Bens, O., Kendzia G., & Huettl, R. F. (2007). Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecological Engineering, 29, 319–328.CrossRefGoogle Scholar
  28. Gundelwein, A., Müller-Lupp, T., Sommerkorn, M., Haupt, E. T. K., Pfeiffer, E.-M. & Wiechmann, H. (2007). Carbon in tundra soils in the Lake Labaz region of arctic Siberia. European Journal of Soil Science, 58, 1164–1174.CrossRefGoogle Scholar
  29. Hald, A. B., & Vinther, E. (2000). Restoration of a species-rich fen-meadow after abandonment: Response of 64 plant species to management. Applied Vegetation Science, 3, 15–24.CrossRefGoogle Scholar
  30. Harris, J. A., Hobbs, R. J., Higgs, E., & Aronson, J. (2006). Ecological restoration and global climate change. Restoration Ecology, 14, 170–176.CrossRefGoogle Scholar
  31. Hatfield, J. L., Sauer, T. J., & Prueger, J. H. (2001). Managing soils to achieve greater water use efficiency: A review. Agronomy Journal, 93, 271–280.CrossRefGoogle Scholar
  32. Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M. C., Diemer, M., Dimitrakopoulos, P. G., et al. (1999). Plant diversity and productivity experiments in European grasslands. Science, 286, 1123–1127.CrossRefGoogle Scholar
  33. Heinkele, T., Neumann, C., Rumpel, C., Strzyszcz, Z., Kögel-Knabner, I., & Hüttl, R. F. (1999). Zur Pedogenese pyrit- und kohlehaltiger Kippsubstrate im Lausitzer Braunkohlerevier. In: Hüttl, R. F., Klem, D., & Weber, E. (Eds.), Rekultivierung von Bergbaufolgelandschaften (pp. 25–44). Berlin: de Gruyter.CrossRefGoogle Scholar
  34. Helming, K., Sieber, S., Tscherning, K., König, B., Müller, K., Wiggering, H., et al. (2007). Land use functionality as a frame for impact assessment. In: Knierim, A., Nagel, U. J., & Schäfer, C. (Eds.), Managing economic, social and biological transformations. Proceedings of the First Green Week Scientific Conference. 2007 (pp. 33–44). Weikersheim: Margraf Publishers.Google Scholar
  35. Hüttl, R. F., & Gerwin, W. (2004). Entwicklung und Bewertung gestörter Kulturlandschaften. Fallbeispiel Niederlausitzer Bergbaufolgelandschaft. Cottbuser Schriften zur Ökosystemgenese und Landschaftsentwicklung, Cottbus, Band 2.Google Scholar
  36. Hüttl, R. F., & Weber, E. (2001). Forest ecosystem development in post-mining landscapes: A case study of the Lusatian lignite district. Naturwissenschaften, 88, 322–329.CrossRefGoogle Scholar
  37. Intergovernmental Panel on Climate Change. (2007). The physical science basis. In S. Solomon et al. (Eds.), Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  38. Jenny, H. (1941). Factors of soil formation. New York: McGraw-Hill.Google Scholar
  39. Jensen, K. (1998). Species composition of soil seed bank and seed rain of abandoned wet meadows and their relation to aboveground vegetation. Flora, 139, 345–359.Google Scholar
  40. Jensen, K., & Gutekunst, K. (2003). Effects of litter on establishment of grassland plant species: The role of seed size and successional status. Basic and Applied Ecology, 4, 579–587.CrossRefGoogle Scholar
  41. Jones, C. C., & DelMoral, R. (2005). Effects of microsite conditions on seedling establishment on the foreland of Coleman Glacier, Washington. Journal of Vegetation Science, 16, 293–300.CrossRefGoogle Scholar
  42. Joosten, H., & Couwenberg, J. (2001). Bilanzen zum Moorverlust – das Beispiel Europa. In: Succow, M., & Joosten, H. (Eds.), Landschaftsökologische Moorkunde (pp. 406–409). Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
  43. Kamm, B., Schneider, B. U., Hüttl, R. F., Grünewald, H., Gusovius, H. J., Stollberg, C., et al. (2006). Lignocellulosic feedstock biorefinery – Combination of technologies of agroforestry and a biobased substance and energy economy. Forum der Forschung, 19, 53–62.Google Scholar
  44. Kendall, C., Elliott, E. M., & Wankel, S. D. (2007). Tracing anthropogenic inputs of nitrogen to ecosystems. In: Michener, R. & Lajtha, K. (Eds.), Stable isotopes in ecology and environmental science (pp. 375–449). Oxford: Blackwell Publishing.CrossRefGoogle Scholar
  45. Kendall, C., McDonnell, J. J., & Gu, W. (2001). A look inside ‘black box’ hydrograph separation models: A study at the Hydrohill catchment. Hydrological Processes, 15, 1877–1902.CrossRefGoogle Scholar
  46. Khan, S. A., Mulvaney, R. L., Ellsworth, T. R., & Boast, C. W., (2007). The myth of nitrogen fertilization for soil carbon sequestration. Journal of Environmental Quality, 36, 1821–1832.CrossRefGoogle Scholar
  47. Kotowski, W., VanAndel, J., VanDiggelen, R., & Hogendorf, J. (2001). Responses of fen plant species to groundwater level and light intensity. Plant Ecology, 155, 147–156.CrossRefGoogle Scholar
  48. Kriebitzsch, W.-U., Beck, W., Schmitt, U., & Veste, M. (2008). Bedeutung trockener Sommer fɒr Wachstumsfaktoren von verschiedenen Herkɒnften der Rotbuche (Fagus sylvatica L). AFZ-Der Wald, 5, 246–248.Google Scholar
  49. Kruijt, B., Witte, J.-P. M., Jacobs C. M. J., & Kroon, T. (2007). Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: A practical approach for the Netherlands. Journal of Hydrology, 349, 257–267.CrossRefGoogle Scholar
  50. Kutzbach, L, Wille, C., & Pfeiffer, E.-M. (2007). The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia. Biogeosciences, 4, 869–890.CrossRefGoogle Scholar
  51. Likens, G. E., & Bormann, F. H. (1995). Biogeochemistry of a forested ecosystem. New York: Springer Verlag.CrossRefGoogle Scholar
  52. Ling, C., Handley, J., & Rodwell, J. (2007). Restructuring the post-industrial landscape: A multifunctional approach. Landscape Research, 32, 285–309.CrossRefGoogle Scholar
  53. Löf, M., Madsen, P., & Stanturf, J. (2008). Restaurering av sydsvensks lövskog – några tankar kring ett nytt skötselkoncept. Svensk Botanisk Tidskrift, 102, 43–51.Google Scholar
  54. Marschner, H. (1986). Mineral nutrition of higher plants. San Diego: Academic Press.Google Scholar
  55. Marshall, J. D., Brooks, J. R., & Lajtha, K. (2007). Source of variation of the stable isotopic composition in plants. In: Michener, R. & Lajtha, K. (Eds.), Stable isotopes in ecology and environmental science (pp. 1–21). Oxford: Blackwell Publishing.Google Scholar
  56. Nii-Annang, S. A., Grünewald, H., Freese, D., Hüttl, R. F., & Dilly, O. (2009). Microbial activity and soil quality in alley cropping systems after 9 years of recultivation of quaternary deposits in eastern Germany. Biology and Fertility of Soils. DOI 10.1007/s00374-009-0360-4.Google Scholar
  57. Nicolau, J. M. (2002). Runoff generation and routing on artificial slopes in a Mediterranean-continental environment: The Teruel coalfield, Spain. Hydrological Processes, 16, 631–647.CrossRefGoogle Scholar
  58. Rockström, J., Steffen, W., Noone, K., Persson, A., Chapin, F. S., Lambin, E. F. (2009). A safe operating space for humanity. Nature, 461, 472–475.CrossRefGoogle Scholar
  59. Romanovsky, V. E., Burgess, M., Smith, S., Yoshikawa, K., & Brown, J. (2002). Permafrost temperature records: Indicators of climate change. Earth Observing System Transactions, American Geophysical Union, 83, 589.CrossRefGoogle Scholar
  60. Rosenthal, G. (1992). Erhaltung und Regeneration von Feuchtwiesen. – Dissertationes Botanicae 182. Berlin: Cramer.Google Scholar
  61. Rosenthal, G., Hildebrandt, J., Zöckler, C., Hengstenberg, M., Mossakowski, D., Lakomy, W., et al. (1998). Feuchtgrünland in Norddeutschland. Ökologie, Zustand, Schutzkonzepte. Münster: Bundesamt für Naturschutz.Google Scholar
  62. Sach, W., & Schrautzer, J. (1994). Phytomasse- und Nährstoffdynamik sowie floristische Veränderungen von Knickfuchsschwanz-Flutrasen (Ranunculo-Alopecuretum geniculati Tx. 37) unter extensiver Nutzung. Flora, 189, 37–50.Google Scholar
  63. Schaaf, W. (2001). What can element budgets of false-time series tell us about ecosystem development on post-lignite mining sites? Ecological Engineering, 17, 241–252.CrossRefGoogle Scholar
  64. Schaaf, W. (2003). Leaching induced changes in substrate and solution chemistry of mine soil microcosms. Water, Air and Soil Pollution – Focus, 3, 139–152.CrossRefGoogle Scholar
  65. Schaaf, W., Gast, M., Wilden, R., Scherzer, J., Blechschmidt, R., & Hüttl, R. F. (1999). Temporal and spatial development of soil solution chemistry and element budgets in different mine soils of the Lusatian lignite mining area. Plant and Soil, 213, 169–179.CrossRefGoogle Scholar
  66. Schaaf, W., Neumann, C., & Hüttl, R. F. (2001). Actual cation exchange capacity in lignite containing pyritic mine soils. Journal of Plant Nutrition and Soil Science, 164, 77–78.CrossRefGoogle Scholar
  67. Schopp-Guth, A. (1997). Die Zusammensetzung des Diasporenpotentials unter Niedermoorböden Nordostdeutschlands. Zeitschrift für Ökologie und Naturschutz, 2, 87–98.Google Scholar
  68. Schrautzer, J., Irmler, U., Jensen, K. Nötzold, R., & Holsten, B. (2004). Auswirkungen großflächiger Beweidung auf die Lebensgemeinschaften eines nordwestdeutschen Flusstales. Schriftenreihe für Landschaftspflege und Naturschutz, 78, 39–62.Google Scholar
  69. Schrautzer, J., & Jensen, K. (2006). Relationship between light availability and species richness during fen grassland succession. Nordic Journal of Botany, 24, 341–353.CrossRefGoogle Scholar
  70. Schrautzer, J., Jensen, K., Holsten, B., Irmler, U., Kieckbusch, J., Noell, C., et al. (2002). The Eidertal pasture landscape – Mire restoration and species conservation in a river valley of Schleswig-Holstein (northwest Germany). In: Redecker, B., Finck, P., Härdtle, W., Riecken, U., & Schröder, E. (Eds.), Pasture landscapes and nature conservation (pp. 227–237). Berlin: Springer.CrossRefGoogle Scholar
  71. SEC. (2006). Thematic Strategy for Soil Protection. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. Retrieved from!celexplus!prod!DocNumber&lg=en&type_doc=COMfinal&an_doc=2006&nu_doc=231.
  72. Smith, P., Smith, U. J., Powlson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., et al. (1997). A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 81, 153–222.CrossRefGoogle Scholar
  73. Stanturf, J., & Madsen, P. (Eds.). (2005). Restoration of boreal and temperate forests. Boca Raton: CRC Press.Google Scholar
  74. Walker, L. R., & Willig, M. R. (1999). An introduction to terrestrial disturbance. In: Walker, L. R. (Ed.), Ecosystems of disturbed grounds. Ecosystems of the world 16 (pp.1–16). Amsterdam: Elsevier.Google Scholar
  75. Weisdorfer, M., Schaaf, W., Blechschmidt, R., Schütze, J., & Hüttl, R. F. (1998). Soil chemical response to drastic reductions in deposition and its effects on the element budgets of three Scots pine ecosystems with different pollution history in NE-Germany. In: Hüttl, R. F. & Bellmann, K. (Eds.), Changes in atmospheric chemistry and effects on forest ecosystems. Nutrients in Ecosystems (pp. 187–225, Vol. 3). Dordrecht: Kluwer Academic Publishers.Google Scholar
  76. Wille, C., Kutzbach, L., Sachs, T., Wagner, D., & Pfeiffer, E.-M. (2008). Methane emission from Siberian arctic polygonal tundra: Eddy covariance measurements and modelling. Global Change Biology, 14, 1395–1408.CrossRefGoogle Scholar
  77. Wilmking, M., D'Arrigo, R., Jacoby, G., & Juday, G. (2005). Increased temperature sensitivity and divergent growth trends in circumpolar boreal forests. Geophysical Research Letters, 32(15), L15715.1–L15715.4.CrossRefGoogle Scholar
  78. Wright, R. F., Lotse, E., & Semb, A., (1994). Experimental acidification of Alpine catchments at Sogndal, Norway: Results after 8 years. Water, Air & Soil Pollution, 72, 297–315.CrossRefGoogle Scholar
  79. Wucherer, W., Veste, M., Herrera-Bonilla, O., & Breckle, S.-W. (2005). Halophytes as useful tools for rehabilitation of degraded lands and soil protection. Proceedings of the First International Forum on Ecological Construction of the Western Beijing, Beijing (pp. 87–94). Retrieved February 2008 from
  80. Zerbe, S., & Wiegleb, G. (2008). Renaturierung von Ökosystemen in Mitteleuropa. Heidelberg: Spektrum Akademischer Verlag.Google Scholar
  81. Zyakun, A., & Dilly, O. (2005). Respiratory quotient and priming effect in an arable soil induced by glucose. Applied Biochemistry and Microbiology, 41, 512–520.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Oliver Dilly
    • 1
    Email author
  • Seth Nii-Annang
    • 2
  • Joachim Schrautzer
    • 3
  • Peter Schwartze
    • 4
  • Vera Breuer
    • 3
  • Eva-Maria Pfeiffer
    • 5
  • Werner Gerwin
    • 6
  • Wolfgang Schaaf
    • 2
  • Dirk Freese
    • 6
  • Maik Veste
    • 6
  • Reinhard F. Hüttl
    • 2
    • 7
  1. 1.School of Integrated Climate System Sciences, Klima CampusUniversity of HamburgHamburgGermany
  2. 2.Soil Protection and Re-cultivation, Brandenburg University of TechnologyCottbusGermany
  3. 3.Ecology-CentreChristian-Albrecht UniversityKielGermany
  4. 4.Biological Station of the District SteinfurtTecklenburgGermany
  5. 5.Institute of Soil Sciences, University of HamburgHamburgGermany
  6. 6.Research Centre for Landscape Development and Mining LandscapesBrandenburg University of TechnologyCottbusGermany
  7. 7.Helmholtz Centre Potsdam, GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations