Advertisement

PROMESPAR: A High Performance Computing Implementation of the Regional Atmospheric Model PROMES

  • Juan E. GarridoEmail author
  • Enrique Arias
  • Diego Cazorla
  • Fernando Cuartero
  • Iván Fernández
  • Clemente Gallardo
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 60)

Abstract

This paper describes the parallelization process of the code PROMES. The parallel code, called PROMESPAR, has been carried out under a distributed platform (cluster of PCs) and using Message Passing Interface (MPI) communication subroutines.

Keywords

Regional atmospheric model parallelization message passing interface 

References

  1. 1.
    Climateprediction.net. http://www.climateprediction.net/.
  2. 2.
  3. 3.
  4. 4.
    Anthes, R.A., Hsie, E.-Y., Kuo, Y.-H.: Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). NCAR Technical Note 282. NCAR, Boulder, CO 80307 (1987)Google Scholar
  5. 5.
    Barros, S.R.M., Dent, D., Isaksen, L., Robinson, G., Mozdzynsky, G., Wollenweber, F.: The ifs model: a parallel production weather code. Parallel Comput (21), 1621–1638 (1995)Google Scholar
  6. 6.
    Blackadar, A.K.: Modeling the nocturnal boundary layer. In: American Meteorological Society, Boston (ed.) Proceedings of the Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality, pp. 46–49 (1976)Google Scholar
  7. 7.
    Castro, M., Fernández, C., Gaertner., M.A.: Descrition of a meso-scale atmospheric numerical model. Mathematics, climate and environment, pp. 230–253 (1993)Google Scholar
  8. 8.
    Davies, H.C.: A lateral boundary formulation for multilevel prediction models. Quart. J. Roy. Meteor. Soc. 102, 405–418 (1976)Google Scholar
  9. 9.
    Drake, J., Foster, I.: Introduction to the special issue on parallel computing in climate and weather modelling. Parallel Comput. (21), 1539–1544 (1995a)Google Scholar
  10. 10.
    Drake, J., Foster, I.: Special issue on parallel computing in climate and weather modelling. Parallel Computing (21) (1995b)Google Scholar
  11. 11.
    Drake, J., Foster, I., Michalakes, J., Toonen, B., Worley, P.: Design and performance of a scalable parallel community climate model. Parallel Comput. (21), 1571–1591 (1995)Google Scholar
  12. 12.
    Ducoudr, N., Laval, K., Perrier, A.: SECHIBA, a new set of parameterizations of the hydrologic exchanges at the landatmosphere interface within the LMD atmospheric general circulation model. J. Climate 6, 248–273 (1993)CrossRefGoogle Scholar
  13. 13.
    Gadd, J.J.: A split explicit integration scheme for numerical weather prediction. Q. J. R. Meteorol. Soc. 104, 569–582 (1978)CrossRefGoogle Scholar
  14. 14.
    Gaertner, M.A., Castro, M.: A new method for vertical interpolation of the mass field. Mon. Wea. Rev. 124, 1596–1603 (1996)CrossRefGoogle Scholar
  15. 15.
    Garand, L.: Some improvements and complements to the infrared emissivity algorithm including a parameterization of the absorption in the continuum region. J. Atmos. Sci. 40, 230–244 (1983)CrossRefGoogle Scholar
  16. 16.
    Grell, D.O., Dudhia, J., Stuffer, D.R.: A description of the fifth-generation penn state/ncar mesoscale model (mm5). Ncar/tn-398 + str, National Center for Atmosphere Research, Boulder, CO (1994)Google Scholar
  17. 17.
    Hack, James J., Rosinski, James M., Williamson, David L., Boville, Byron A., Truesdale, John E.: Computational design of the ncar community climate model. Parallel Comput. (21), 1545–1569 (1995)Google Scholar
  18. 18.
    Hammond, S., Loft, Richard D., Dennis, John M., Sato, Richard K.: Implementation and performance issues of a massively parallel atmospheric model. Parallel Comput. (21), 1593–1619 (1995)Google Scholar
  19. 19.
    Hsie, E.Y, Anthes, R.A., Keyser, D.: Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci 41, 2581–2594 (1984)CrossRefGoogle Scholar
  20. 20.
    Jacobsen, I., Heise, E.: A new economic method for the computation of the surface temperature in numerical models. Beitr. Phys. Atmosph. 55, 128–141 (1982)zbMATHGoogle Scholar
  21. 21.
    Kain, J.S., Fritsch, J.M.: Convective parameterization for mesoscale models: The KainFritsch scheme. The Representation of Cumulus Convection in Numerical Models. Meteor. Monogr. No. 46, Amer. Meteor. Soc. 165–170 (1993)Google Scholar
  22. 22.
    Mesinger, F., Arakawa, A.: Numerical methods used in atmospheric models. GARP Publication Series, 17:1–64 (1976)Google Scholar
  23. 23.
    Michalakes, J.: MM90: A scalable parallel implementation of the Penn State/NCAR Mesoscale Model (MM5). Parallel Computing, 23:14, 2173–2186 (1997)zbMATHCrossRefGoogle Scholar
  24. 24.
    Michalakes, J., Canfield, T., Nanhyndiah, R., Hammond, S., Grell, G.: Parallel implementation, validation and performance of mm5. In: Proceedings of the Sixth ECMWF Workshop on the Use of Parallel Processors in Meteorology, World Scientific, River Edge, NJ pp. 266–276 (1995)Google Scholar
  25. 25.
    Sela, J.G.: Weather forecasting on parallel architectures. Parallel Comput (21), 1639–1654 (1995)Google Scholar
  26. 26.
    Shuman, F.G., Hovermale, J.B.: An operational sixlayer primitive equation model. J. Appl. Meteor, 7, 525–547 (1968)CrossRefGoogle Scholar
  27. 27.
    Stephens, G.L.: Radiation profiles in extended water clouds ii: parameterizaton schemes. J. Atmos. Sci. 35, 2123–2132 (1978)CrossRefGoogle Scholar
  28. 28.
    Wehner, M.F., Mirin, A.A., Eltgroth, P.G., Dannevik, W.P., Mechoso, C.R., Farrara, J.D., Spahr, J.A.: Performance of a distributed memory finite difference atmospheric general circulation model. Parallel Comput. (21), 1655–1675 (1995)Google Scholar
  29. 29.
    Zhang, D.L., Anthes, R.A.: A high resolution model of the planetary boundary layer sensitivity test and comparisons with sesame79 data. J. Appl. Meteor. 21, 1594–1629 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Juan E. Garrido
    • 1
    Email author
  • Enrique Arias
    • 1
  • Diego Cazorla
    • 1
  • Fernando Cuartero
    • 1
  • Iván Fernández
    • 2
  • Clemente Gallardo
    • 2
  1. 1.Inst. Investigación en Informática. University of Castilla-La Mancha.AlbaceteSpain
  2. 2.Inst. de Ciencias Ambientales. University of Castilla-La Mancha.ToledoSpain

Personalised recommendations