Tree Rings and Natural Hazards pp 139-155

Part of the Advances in Global Change Research book series (AGLO, volume 41) | Cite as

Assessing Rockfall Activity in a Mountain Forest – Implications for Hazard Assessment

  • Markus Stoffel
  • Dominique M. Schneuwly
  • Michelle Bollschweiler


Rockfall represents the most intensely studied geomorphic process in mountainous areas. Nevertheless, very little information exists on how rockfall frequencies and magnitudes vary over time and how hazards and risks posed by rockfall could be reliably assessed. Former studies have mainly focused on short-term observations of contemporary rockfall activity (Luckman 1976, Douglas 1980), rendering it difficult to estimate long-term accretion rates. Long-term estimates of rockfall accumulation rates have, in contrast, been derived from accumulated talus volumes (Rapp 1960), but such rates may neither be representative of the present-day rockfall activities nor of those that prevailed in the past. On slopes composed of siliceous lithologies, lichenometry has repeatedly been used to evaluate the mean age or activity of talus surfaces (André 1997) or to estimate rates of rockfall accretion (Luckman and Fiske 1995).


  1. André MF (1997) Holocene rockwall retreat in Svalbard: a triple-rate evolution. Earth Surf Process Land 22:423–440CrossRefGoogle Scholar
  2. Bebi P, Kienast F, Schönenberger W (2001) Assessing structures in mountain forests as a basis for investigating the forests’ dynamics and protective function. Forest Ecol Manage 145:3–14CrossRefGoogle Scholar
  3. Berger F, Rey F (2004) Mountain protection forests against natural hazards and risks: New French developments by integrating forests in risk zoning. Nat Haz 33:395–404CrossRefGoogle Scholar
  4. Braam RR, Weiss EEJ, Burrough PA (1987) Spatial and temporal analysis of mass movement using dendrochronology. Catena 14:573–584CrossRefGoogle Scholar
  5. Douglas GR (1980) Magnitude frequency study of rockfall in Co. Antrim, Northern Ireland. Earth Surf Process Land 5:123–129CrossRefGoogle Scholar
  6. Fantucci R, Sorriso-Valvo M (1999) Dendrogeomorphological analysis of a slope near Lago, Calabria (Italy). Geomorphology 30:165–174CrossRefGoogle Scholar
  7. Gruber S, Hoelzle M (2001) Statistical modelling of mountain permafrost distribution: local calibration and incorporation of remotely sensed data. Permafr Periglac Process 12:69–77CrossRefGoogle Scholar
  8. Haeberli W (1992) Construction, environmental problems and natural hazards in periglacial mountain belts. Permafr Periglac Process 3:111–124CrossRefGoogle Scholar
  9. Hétu B, Gray JT (2000) Effects of environmental change on scree slope development throughout the postglacial period in the Chic-Choc Mountains in the northern Gaspé Peninsula, Québec. Geomorphology 32:335–355CrossRefGoogle Scholar
  10. Joris CL (1995) Der Bergsturz, ein Zufallsereignis unter vielen. In: Naturforschende Gesellschaft Oberwallis (ed) Der Bergsturz von Randa 1991, pp 43–49. Neue Buchdruckerei Visp, VispGoogle Scholar
  11. Luckman BH (1976) Rockfalls and rockfall inventory data: some observations from Surprise Valley, Jasper National Park. Earth Surf Process Land 1:287–298CrossRefGoogle Scholar
  12. Luckman BH, Fiske CJ (1995) Estimating long-term rockfall accretion rates by lichenometry. In: Slaymaker O (ed) Steepland geomorphology. Wiley, Chichester, pp 233–255Google Scholar
  13. Matsuoka N, Sakai H (1999) Rockfall activity from an alpine cliff during thawing periods. Geomorphology 28:309–328CrossRefGoogle Scholar
  14. Motta R, Haudemand JC (2000) Protective forests and silvicultural stability – an example of planning in the Aosta Valley. Mt Res Dev 20:180–187CrossRefGoogle Scholar
  15. Müller HN (1980) Jahrringwachstum und Klimafaktoren: Beziehungen zwischen Jahrringwachstum von Nadelbaumarten und Klimafaktoren an verschiedenen Standorten im Gebiet des Simplonpasses (Wallis, Schweiz). Veröffentlichungen der Forstlichen Bundesversuchsanstalt Wien 25, Agrarverlag, WienGoogle Scholar
  16. Perret S, Stoffel M, Kienholz H (2006) Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps – a dendrogeomorphological case study. Geomorphology 74:219–231CrossRefGoogle Scholar
  17. Rapp A (1960) Recent development of mountain slopes in Kärkevagge and surroundings, Northern Scandinavia. Geogr Ann 42:65–200CrossRefGoogle Scholar
  18. Schneuwly DM, Stoffel M (2008a) Tree-ring based reconstruction of the seasonal timing, major events and origin of rockfall on a case-study slope in the Swiss Alps. Nat Haz Earth Syst Sci 8:203–211CrossRefGoogle Scholar
  19. Schneuwly DM, Stoffel M (2008b) Changes in spatio-temporal patterns of rockfall activity on a forested slope – a case study using dendrogeomorphology. Geomorphology 102:522–531CrossRefGoogle Scholar
  20. Schneuwly DM, Stoffel M, Bollschweiler M (2009) Formation and spread of callus tissue and tangential rows of resin ducts in Larix decidua and Picea abies following rockfall impacts. Tree Physiol 29:281–289CrossRefGoogle Scholar
  21. Schweingruber FH (1996) Tree rings and environment. Dendroecology. Paul Haupt, Bern, Stuttgart, WienGoogle Scholar
  22. Stoffel M (2008) Dating past geomorphic processes with tangential rows of traumatic resin ducts. Dendrochronologia 26:53–60CrossRefGoogle Scholar
  23. Stoffel M (2006) A review of studies dealing with tree rings and rockfall activity: The role of dendrogeomorphology in natural hazard research. Nat Haz 39:51–70CrossRefGoogle Scholar
  24. Stoffel M, Bollschweiler M (2009) What tree rings can tell about earth-surface processes. Teaching the principles of dendrogeomorphology. Geogr Compass 3:1013–1037CrossRefGoogle Scholar
  25. Stoffel M, Bollschweiler M (2008) Tree-ring analysis in natural hazards research – an overview. Nat Haz Earth Syst Sci 8:187–202CrossRefGoogle Scholar
  26. Stoffel M, Hitz OM (2008) Snow avalanche and rockfall impacts leave different anatomical signatures in tree rings of Larix decidua. Tree Physiol 28:1713–1720Google Scholar
  27. Stoffel M, Wehrli A, Kühne R, Dorren LKA, Perret S, Kienholz H (2006) Quantifying the protective effect of mountain forests against rockfall using a 3D simulation model. Forest Ecol Manage 225:113–122CrossRefGoogle Scholar
  28. Stoffel M, Lièvre I, Monbaron M, Perret S (2005) Seasonal timing of rockfall activity on a forested slope at Täschgufer (Valais, Swiss Alps) – a dendrochronological approach. Z Geomorphol 49:89–106Google Scholar
  29. Wieczorek GF, Jäger S (1996) Triggering mechanisms and depositional rates of in the Yosemite Valley, California. Geomorphology 5:17–31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Markus Stoffel
    • 1
  • Dominique M. Schneuwly
    • 3
  • Michelle Bollschweiler
    • 2
  1. 1.Laboratory of Dendrogeomorphology, Institute of Geological SciencesUniversity of BernBernSwitzerland
  2. 2.Chair for Climatic Change and Climate Impacts, Institute for Environmental SciencesUniversity of GenevaCarouge-GenevaSwitzerland
  3. 3.Department of GeosciencesUniversity of FribourgFribourgSwitzerland

Personalised recommendations