Amazonian Floodplain Forests pp 511-540

Part of the Ecological Studies book series (ECOLSTUD, volume 210)

| Cite as

Ecophysiology, Biodiversity and Sustainable Management of Central Amazonian Floodplain Forests: A Synthesis

  • Wolfgang J. Junk
  • Maria T. F. Piedade
  • Pia Parolin
  • Florian Wittmann
  • Jochen Schöngart
Chapter

Abstract

This synthesis chapter provides an overview of the 23 chapters of this book. With more than 1000 tree species, Amazonian floodplain forests are the most diverse forests of this kind. They occur in different forms and under different hydrological and chemical (water and soil) conditions. Forests in nutrient rich whitewater river floodplains (várzeas) are richer in species, more dynamic, and more productive than those of black- and clearwater rivers. The new species colonization concept explains the relationship between upland and várzea forests. A model of forest succession is provided that indicates the development of different seral stages under different hydrological and sedimentological conditions. Trees react to long-term flooding and water-logging of the soils with many anatomical, morphological, physiological and phonological adaptations, which result in specific life history traits. Seed production, seedling establishment, and sapling survival are of fundamental importance for the regeneration of these forests and their reactions to the frequent set-backs caused by erosion and sedimentation processes. Until now, the use of floodplain forests has been restricted to highly selective timber exploitation, which depletes the stocks of the respective tree species. A management model, based on growth-oriented logging (GOL) is provided here. In this model, the extraction of the logs depends on water levels, the maximums and minimums of which can be predicted using new model based on sea surface water temperatures in the Pacific and the Atlantic Oceans. Such predictions would facilitate the management of the natural resources of the varzea, including management using forestry. When the many riparian forests are included, floodplain forests cover about one third of the Amazonian rain forest area. However, this fact has not been considered in management aspects and climate models for Amazonia. Global climate changes certainly will affect the hydrological cycle in Amazonia. However, we consider the prediction by the Hadley Center of a near “savannization” of the Amazon forest to be without sufficient scientific basis and unhelpful, because it may even accelerate the deforestation of Amazonia. The maintenance of intact wetlands will be very important for the sponge function of the landscape, which acts to retain water and to buffer extremely dry and wet periods. In this context, the floodplain forest is of utmost importance as a refuge for many plant and animal species.

References

  1. Adis J, Erwin TL, Battirola LD, Ketelhut ZM (this volume) The importance of floodplain forests for animal biodiversity: beetles in canopies of floodplain and upland forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  2. Agostinho AA, Gomes LC, Pelicice FM (2007) Ecologia e Manejo de Recursos Pesqueiros em Reservatórios do Brasil. Eduem, Maringá, Brazil, p 501Google Scholar
  3. Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva-Dias MAF (2004) Smoking rain clouds over the Amazon. Science 303:1337–1340PubMedCrossRefGoogle Scholar
  4. Ayres JM (1993) As matas de várzea do Mamirauá. In: Sociedade civil Mamirauá (ed) Estudos de Mamirauá, vol.1. Sociedade civil Mamirauá, Mamirauá, pp 1-123Google Scholar
  5. Bazzaz FA, Pickett STA (1980) Physiological ecology of tropical succession: a comparative review. Annu Rev Ecol System 11:287–310CrossRefGoogle Scholar
  6. Bentes-Gama MM, Scolforo JRS, Gama JRV, De Oliveira AD (2002) Estrutura e valorização de uma floresta de várzea alta na Amazônia. Cerne 8(1):88–102Google Scholar
  7. Berger WH, Wefer G (1992) Klimageschichte aus Tiefseesedimenten. Naturwissenschaften 79:541–550CrossRefGoogle Scholar
  8. Blom CWPM (1999) Adaptations to flooding stress: from plant community to molecule. Plant Biol 1:261–273CrossRefGoogle Scholar
  9. Castello L (2007) A socio-ecological synthesis on the conservation of the pirarucu (Arapaima) in floodplains of the Amazon. Ph.D. thesis, State University of New York, USA, p 212Google Scholar
  10. Chambers JQ, Santos J, Ribeiro RJ, Higuchi N (2001) Tree damage, allometric relationships, and above-ground net primary production in Central Amazon forest. Forest Ecol Manag 152:73–84CrossRefGoogle Scholar
  11. Cochrane MA (2003) Fire science for rainforests. Nature 421:913–919PubMedCrossRefGoogle Scholar
  12. Colinvaux PA, Irion G, Räsänen ME, Bush MB, Nunes de Mello JAS (2001) A paradigm to be discarded: geological and paleoecological data falsify the Haffer and Prance refuge hypothesis of Amazonian speciation. Amazoniana 16:609–646Google Scholar
  13. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310PubMedCrossRefGoogle Scholar
  14. Costa MH, Botta A, Cardille J (2003) Effects of large-scale change in land cover on the discharge of the Tocantins River, Amazonia. J Hydrol 283:206–217CrossRefGoogle Scholar
  15. Crawford RMM (2003) Seasonal differences in plant responses to flooding and anoxia. Canad J Bot 81(12):1224–1246CrossRefGoogle Scholar
  16. De Simone O, Müller E, Junk WJ, Schmid W (2002b) Adaptations of central Amazon tree species to prolonged flooding, Root morphology and leaf longevity. Plant Biol 4:515–522CrossRefGoogle Scholar
  17. Denslow JS (1980) Gap partitioning among tropical rain forest trees. Biotropica 12:47–55CrossRefGoogle Scholar
  18. Ferreira CS, Figueira AVO, Gribel R, Wittmann F, Piedade MTF (this volume) Genetic variability, divergence and speciation in trees of periodically flooded forests of the Amazon: a case study of Himatanthus sucuuba (SPRUCE) WOODSON. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  19. Foley JA, Botta A, Coe MT, Costa MH (2002) El Niño-Southern oscillation and the climate, ecosystems and rivers of Amazonia. Global Biogeochem Cy 16(4):1132. doi:10.1029/2002GB001872 CrossRefGoogle Scholar
  20. Fonseca Júnior SF (2007) Crescimento arbóreo de Tabebuia barbata (Bignoniaceae) e Vatairea guianensis (Fabaceae), em florestas alagáveis do igapó e várzea, na Amazônia Central, por métodos dendrocronológicos. M.Sc. thesis, INPA/UFAM, Manaus, BrazilGoogle Scholar
  21. Furch K (2000) Chemistry and bioelement inventory of contrasting Amazonian forest soils. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The Central Amazon floodplain: actual use and options for a sustainable management. Backhuys, Leiden, pp 109–128Google Scholar
  22. Gessner F (1968) Zur ökologischen Problematik der Überschwemmungswälder des Amazonas. Int Rev Ges Hydrobiol 53(4):525–547CrossRefGoogle Scholar
  23. Goulding M (1980) The fishes and the forest, exploration in Amazonian natural history. University of California Press, Berkeley/Los Angeles/LondonGoogle Scholar
  24. Goulding M, Smith NJH, Mahar DJ (1996) Floods of fortune: ecology and economy along the Amazon. Columbia University Press, New York, p 193Google Scholar
  25. Haase K, Rätsch G (this volume) The morphology and anatomy of tree roots and their aeration strategies. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  26. Haffer J, Prance GT (2001) Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16:579–607Google Scholar
  27. Horna V, Zimmermann R, Müller E, Parolin P (this volume) Sap flow and stem respiration. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  28. IPCC (2007) Climate change 2007: the physical science basis: summary for policymakers and technical summary. Working group I of the intergovernmental panel on climate change (IPCC), WMO & UNEP, Geneva, SwitzerlandGoogle Scholar
  29. Irion G, Junk WJ, Mello JASN (1997) The large Central Amazonian river floodplains near Manaus: geological, climatological, hydrological, and geomorphological aspects. In: Junk WJ (ed) The Central Amazon floodplains. Ecology of a pulsing system. Springer, Berlin/Heidelberg/New York, pp 23–46CrossRefGoogle Scholar
  30. Irion G, de Mello JASN, Morais J, Piedade MTF, Junk WJ, Garming L (this volume) Development of the Amazon valley during the middle to late quaternary: sedimentological and climatological observations. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  31. Jackson MB, Armstrong W (1999) Formation of aerenchyma and the process of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287CrossRefGoogle Scholar
  32. Jackson MB, Colmer TD (2005) Response and adaptation by plants to flooding stress. Ann Bot 96:501–505PubMedCrossRefGoogle Scholar
  33. Junk WJ (1993) Wetlands of tropical South America. In: Whigham D, Hejny S, Dykyjova D (eds) Wetlands of the world. Junk Publications, Dordrecht, pp 679–739Google Scholar
  34. Junk WJ, Barley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127Google Scholar
  35. Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) (2000a) The central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers b.V, LeidenGoogle Scholar
  36. Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (2000b) Actual use and options for the sustainable management of the central Amazon floodplain: discussion and conclusions. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers b.V, Leiden, pp 535–579Google Scholar
  37. Junk WJ, Piedade MTF (2005) Amazonian wetlands. In: Fraser LH, Keddy PA (eds) Large wetlands: their ecology and conservation. Cambridge University Press, Cambridge, pp 63–117Google Scholar
  38. Junk WJ, Piedade MTF (this volume) An introduction to SouthAmerican wetland forests: distribution, definitions and general characterization. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  39. Junk WJ, Piedade MTF, Wittmann F, Schöngart J (this volume a) The role of floodplain forests in an integrated sustainable management concept of the natural resources of the central Amazonian várzea. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  40. Junk WJ, Soares MGM, Saint-Paul U (1997) The fish. In: Junk WJ (ed) The Central Amazon floodplain – ecology of a pulsing system. Springer, Berlin. Ecolog Stud 126:385–408Google Scholar
  41. Keel SHK, Prance GT (1979) Studies of the vegetation of a white-sand black-water igapó (Rio Negro, Brazil). Acta Amazonica 9:645–655Google Scholar
  42. Kern J, Kreibich H, Koschorreck M, Darwich A (this volume) Nitrogen balance of a floodplain forest of the Amazon River: the role of Nitrogen fixation. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  43. Klinge H, Junk WJ, Revilla CJ (1990) Status and distribution of forested wetlands in tropical South America. Forest Ecol Manage 33/34:81–101. Elsevier, AmsterdamGoogle Scholar
  44. Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monograph 1:1–29Google Scholar
  45. Laurance WF, Williamson GB (2001) Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conserv Biol 15:1529–1535CrossRefGoogle Scholar
  46. Lipper L (2000) Forest degradation and food security. Unasilva (Forests, food security, and sustainable livelihoods), p 202Google Scholar
  47. Lundberg JG, Marshall LG, Guerrero J, Horton B, Malabarba MCSL, Wesselingh F (1998) The stage for neotropical fish diversification. In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS (eds) Phylogeny and classification of Neotropical fishes. EDIPUCRS, Porto Alegre, pp 13–48Google Scholar
  48. Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik CI, Di Fiore A, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis LL, Montoya LMM, Monteagudo A, Neill DA, Núñez Vargas P, Patiño S, Pitman NCA, Quesada CA, Salomão R, Silva JNM, Lezama AT, Martínez RV, Terborgh J, Vinceti B, Lloyd J (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biol 10:563–591CrossRefGoogle Scholar
  49. Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deorestation, and fate of the Amazon. Science 319:169–172PubMedCrossRefGoogle Scholar
  50. Marengo JA (2006) Mudancas climáticas globais e seus efeitos sobre a biodiversidade. Caracterizacao do clima atual e definicao das alteracoes climaticas para o territorio Brasileiro ao longo do seculo XXI. Biodiversidade 26, Brasilia DF, pp 1–163Google Scholar
  51. Melack JM, Hess LL (this volume) Remote sensing of the distribution and extent of wetlands in the Amazon basin. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  52. Nepstad DC, Veríssimo A, Alencar A, Nobre CA, Lima E, Lefebvre P, Schlesinger P, Potter C, Moutinho P, Mendoza E, Cochrane M, Brooks V (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508CrossRefGoogle Scholar
  53. Nunes da Cunha C, Junk WJ (in press) A preliminary classification of habitats of the Pantanal of Mato Grosso and Mato Grosso do Sul, and its relation to international wetland classification systems. Pensoft, Sofia-MoskowGoogle Scholar
  54. Oliveira PHF, Artaxo P, Pires C, De Lucca S, Procópio A, Holben B, Schafer J, Cardoso LF, Wofsy SC, Rocha HR (2007) Effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia. Tellus B 59:338–349CrossRefGoogle Scholar
  55. Oliveira Wittmann A (2007) Conteúdo de tococromanóis em espécies arbóreas de várzea da Amazônia Central sob condições controladas. Ph.D. Dissertation Instituto Nacional de Pesquisas da Amazônia, ManausGoogle Scholar
  56. Padoch C, Ayres JM, Pinedo-Vasquez M, Henderson A (1999) Várzea: diversity, development, and conservation of Amazonia’s whitewater floodplains. The New York Botanical Garden Press, New YorkGoogle Scholar
  57. Padovani CR, Forsberg BR, Pimentel TP (1995) Contaminação mercurial em peixes do Rio Madeira: resultados e recomendações. Acta Amazonica 25(5):127–136Google Scholar
  58. Parolin P (2001c) Senna reticulata, a pioneer tree from Amazonian várzea floodplains. Bot Rev 67:239–254CrossRefGoogle Scholar
  59. Petermann P (1997) The birds. In: Junk WJ (ed) The Central Amazon floodplain. Ecology of a pulsing system. Springer, Berlin/Heidelberg/New York, pp 419–452CrossRefGoogle Scholar
  60. Phillips O, Gentry AH, Wilkin P, Gálvez-Durand C (1994) Quantitative ethnobotany and Amazonian conservation. Conserv Biol 8(1):225–248CrossRefGoogle Scholar
  61. Piedade MTF, Ferreira CS, Oliveira-Wittmann A de, Buckeride M, Parolin P (this volume) Biochemistry of Amazonian floodplain trees. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  62. Prance GT (1979) Notes on the vegetation of Amazonia. 3. The terminology of Amazonian forest types subject to inundation. Brittonia 31:26–38CrossRefGoogle Scholar
  63. Prentice IC, Lloyd J (1998) C-quest in the Amazon Basin. Nature 396:619–620CrossRefGoogle Scholar
  64. Price JP, Elliot-Fisk D (2004) Topographic history of the Maui Nui Complex, Hawai'i, and its implications for biogeography. Pacific Sci 58(1):27–45CrossRefGoogle Scholar
  65. Queiroz HL, Peralta N (this volume) Protected areas in Amazonian várzea and their role in its conservation: the case of Mamirauá Sustainable Development Reserve (MSDR). In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  66. Rohling EJ, Grant K, Hemleben CH, Siddall M, Hoogakker BAA, Bolshaw M, Kucera M (2008) High rates of sea-level rise during the last interglacial period. Nature Geoscience vol 1. Heft 1:38–42Google Scholar
  67. Rottenberger S, Kleiss B, Kuhn U, Wolf A, Piedade MTF, Junk J, Kesselmeier J (2008) The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere. Biogeosciences (Katlenburg-Lindau) (5):1085–1100Google Scholar
  68. Salo J, Kalliola R, Häkkinen L, Mäkinen Y, Niemelä P, Puhakka M, Coley PD (1986) River dynamics and the diversity of Amazon lowland forest. Nature 322:254–258CrossRefGoogle Scholar
  69. Santos R (1980) História econômica da Amazônia (1800–1920). TA Queiroz, São PauloGoogle Scholar
  70. Scarano FR, Cattânio JH, Crawford RMM (1994) Root carbohydrate storage in young saplings of an Amazonian tidal várzea forest before the onset of the wet season. Acta Botanica Brasilica 8(2):129–139Google Scholar
  71. Schöngart J (this volume) Growth-Oriented Logging (GOL): a new concept for an ecologically sustainable forest management in central Amazonian floodplains. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  72. Schöngart J, Junk WJ (2007) Forecasting the flood-pulse in Central Amazonia by ENSO-indices. J Hydrol 335:124–132CrossRefGoogle Scholar
  73. Schöngart J, Junk WJ, Piedade MTF, Ayres JM, Hüttermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern oscillation effect. Global Change Biol 10:683–692CrossRefGoogle Scholar
  74. Schöngart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597CrossRefGoogle Scholar
  75. Schöngart J, Piedade MTF, Wittmann F, Junk WJ, Worbes M (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:654–661CrossRefGoogle Scholar
  76. Smith NJH (1999) The Amazon River Forest: a natural history of plants, animals, and people. Oxford University Press, New YorkGoogle Scholar
  77. Soares-Filho BS, Nepstad DC, Curran LM, Cerqueira GC, Garcia RA, Azevedo Ramos C, Voll E, McDonald A, Lefebvre P, Schlesinger P (2006) Modelling conservation in the Amazon basin. Nature 440:520–523PubMedCrossRefGoogle Scholar
  78. Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall. Ambio 30:388–396PubMedGoogle Scholar
  79. Stadtler EWC (2007) Estimativas de biomassa lenhosa, estoque e seqüestro de carbono acima do solo ao longo do gradiente de inundação em uma floresta de igapó alagada por água preta na Amazônia Central. M.Sc. thesis, INPA/UFAM, Manaus, BrazilGoogle Scholar
  80. Sternberg HO'R (1998) A água e o homem na várzea do Careiro, 2 edn. Museu Paraense Emílio Goeldi, BelémGoogle Scholar
  81. Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich JVK, Moore B III, Vörösmarty CJ (1998) Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396:664–667CrossRefGoogle Scholar
  82. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288PubMedCrossRefGoogle Scholar
  83. Waldhoff D, Junk WJ, Furch B (1998) Responses of three Central Amazonian tree species to drought and flooding under controlled conditions. Int J Ecol Environ 24:237–252Google Scholar
  84. Waldhoff D, Parolin P (this volume) Morphology and anatomy of leafs. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  85. Waldhoff D, Saint-Paul U, Furch B (1996) Value of fruits and seeds from the floodplain forests of Central Amazonia as food resource for fish. Ecotropica 2:143–156Google Scholar
  86. Whitmore TC (1989) Canopy gaps and the two major groups of forest trees. Ecology 70:536–537CrossRefGoogle Scholar
  87. Williams E, Antonia AD, Antonia VD, Almeida JD, Suarez F, Liebmann B, Malhado ACM (2005) The drought of the century in the Amazon basin: an analysis of the regional variation of rainfall in South America in 1926. Acta Amazonica 35:231–238CrossRefGoogle Scholar
  88. Wittmann F, Schöngart J, Junk WJ (this volume) Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  89. Worbes M, Fichtler E (this volume) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Wolfgang J. Junk
    • 1
    • 2
  • Maria T. F. Piedade
    • 3
  • Pia Parolin
    • 4
  • Florian Wittmann
    • 5
  • Jochen Schöngart
    • 6
  1. 1.State University of Amazonas (UEA), National Institute of Amazon Research (INPA)ManausBrazil
  2. 2.Working Group of Tropical EcologyMax-Planck-Institute for Evolutionary BiologyPlönGermany
  3. 3.Wetlands Ecology and Adaptations of Plants to FloodingNational Institute of Amazon Research (INPA)ManausBrazil
  4. 4.Biozentrum Klein Flottbek, Systematik der PflanzenUniversity of HamburgHamburgGermany
  5. 5.Biogeochemistry DepartmentMax Planck Institute for ChemistryMainzGermany
  6. 6.Biogeochemistry DepartmentMax Planck Institute for ChemistryMainzGermany

Personalised recommendations