Development of the Amazon Valley During the Middle to Late Quaternary: Sedimentological and Climatological Observations

  • Georg Irion
  • José A. S. N. de Mello
  • Jáder Morais
  • Maria T. F. Piedade
  • Wolfgang J. Junk
  • Linda Garming
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 210)

Abstract

Pleistocene sea-level changes affected the Amazon River as far as 2,500 km inland. This results on one hand with the formation of large floodplains of the Amazon and the lower parts of its tributaries during sea-level heights and on the other hand with a deeply incised river system during low sea-level stages. This was most effective since Mid-Pleistocene when the changes of sea-level got stronger. This could be shown from the deeply incised valleys of Negro and Tapajós Rivers. During Last Glacial Maximum the slope of the Amazon below its junction with Tapajós River increased by the factor 10, resulting probably in a braided River. Paleofactors of sediment cores taken from Central Amazonia lakes and from Tapajós River give no hint for a significant change in climate.

References

  1. Absy ML, Cleef A, Fournier M, Martin L, Servant M, Sifeddine A, da Silva F, Soubiès F, Suguio K, Turcq B, van der Hammen T (1991) Mise en évidence de quatre phases d'ouverture de la forêt dense dans le sud-est de L'Amazonie au cours des 60,000 dernières années. Première comparaison avec d'autres régions tropicales. Comptes Rendus Academie des Sciences Paris, Series II, 312, 673–678Google Scholar
  2. Baker PA, Seltzer GO, Fritz SC, Dunbar RB, Grove MJ, Tapia PM, Cross SL, Rowe HD (2001) The history of South American tropical precipitation for the past 25, 000 years. Science 291:640–643PubMedCrossRefGoogle Scholar
  3. Behling H, Keim G, Irion G, Junk W, Nunes De Mello J (2001) Holocene environmental changes in central Amazon basin inferred from Lago Calado (Brazil). Palaeogeograph Palaeoclimatol Palaeoecol 173:87–101CrossRefGoogle Scholar
  4. Berger WH, Wefer G (1992) Klimageschichte aus Tiefseesedimenten. Naturwissenschaften 79:541–550CrossRefGoogle Scholar
  5. Bush MB, Miller MC, De Oliveira PE, Colinvaux PA (2000) Two histories of environmental change and human disturbance in eastern lowland Amazonia. The Holocene 10:543–554CrossRefGoogle Scholar
  6. Colinvaux PA, Irion G, Räsänen ME, Bush MB, Nunes de Mello JAS (2001) A paradigm to be discarded: geological and paleoecological data falsify the Haffer and Prance refuge hypothesis of Amazonian speciation. Amazoniana 16:609–646Google Scholar
  7. Cowell PJ, Roy PS, Jones RA (1992) Shoreface translation model: computer simulstion of coastal-sand-body response to sea-level rise. Math Comput Simulat 33:603–608CrossRefGoogle Scholar
  8. Dunne T, Mertes LAK, Meade RH, Richey JE, Forsberg BR (1998) Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Geolog Socie Am Bull 110:450–467CrossRefGoogle Scholar
  9. Gourou P (1950) Observações Geográficas na Amazônia. Revista Brasileira Geográfica no. 3:49–102Google Scholar
  10. Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137PubMedCrossRefGoogle Scholar
  11. Heckenberger MJ, Kuikuro A, Kuikuro UT, Russell JC, Schmidt M, Fausto C, Franchetto B (2003) Amazonia 1492: Pristine forest or cultural parkland? Science 301:1710–1713 nicht im TextGoogle Scholar
  12. Irion G (1976a) Quarternary sediments of the upper Amazon lowlands of Brazil. Biogeographica 7:163–167Google Scholar
  13. Irion G (1976b) Mineralogisch-geochemische Untersuchungen an der pelitischen Fraktion amazonischer Oberböden und Sedimente. Biogeographica 7:7–25Google Scholar
  14. Irion G (1978) Soil infertility in the Amazonian rain forest. Naturwissenschaften 65:515–519CrossRefGoogle Scholar
  15. Irion G (1984a) Clay minerals of Amazon soils. In: Sioli H (ed) The Amazon – limnology and landscape ecology of a mighty tropical river and its Basin, pp 537–579. The Hague, Boston, Lancaster (Dr. W. Junk)Google Scholar
  16. Irion G (1984b) Sedimentation and sediments of Amazon rivers and evolution of the Amazon landscape since Pliocene times. In: Sioli H (ed) The Amazon – limnology and landscape ecology of a mighty tropical river and its Basin, pp 201–214. The Hague, Boston, Lancaster (Dr. W. Junk)Google Scholar
  17. Irion G, Bush MB, Nunes de Mello JA, Stüben D, Neumann T, Müller G, de Morais JO, Junk JWA (2006) Multiproxy record of Holocene lake sediments from the Rio Tapajós, eastern Amazonia. Palaeogeograph Palaeoclimatol Palaeoecol 240:523–535CrossRefGoogle Scholar
  18. Irion G, Junk WJ (1989) Amazonian lake sediments. In: XXIVth Congress of the international association of theoretical and applied limnology, 13–19 August 1989, vol 69, München (Abstract)Google Scholar
  19. Irion G, Mueller J, Keim G, Nunes De Mello J, Junk WJ (1999) The late quaternary river and lake development in Central Amazonia. Extended abstract (10 pages) in the Abstract-Volume (CD-ROM) of the international symposium on Hydrological and geochemical processes in large-scale river basins, Manaus/BrazilGoogle Scholar
  20. Irion G, de Mello JASN, Morais J, Piedade MTF, Junk WJ, Garming L (this volume) Development of the Amazon valley during the middle to late quaternary: sedimentological and climatological observations. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  21. Keim G, Irion G, Behling H, Junk WJ, Nunes De Mello J (1999) The sediment deposits of Lago Calado, a Ria Lake in Central Amazonia (Brazil), as indicator for postglacial water level rise of the Amazon river. Extended abstract (8 pages) in the Abstact-Volume (CD-ROM) of the international symposium on Hydrological and geochemical processes in large-scale river basins, Manaus/BrazilGoogle Scholar
  22. Latrubesse EM, Franzinelle E (2002) The Holocene alluvial plain of the middle Amazon River, Brazil. Geomorphology 44:241–257CrossRefGoogle Scholar
  23. Mayle FE, Burbridge R, Killeen TJ (2000) Millennial-scale dynamics of southern Amazonian rain forests. Science 290:2291–2294PubMedCrossRefGoogle Scholar
  24. Müller J, Irion G, Nunes De Mello J, Junk WJ (1995) Hydrological changes of the Amazon during the last glacial-interglacial cycle in Central-Amazonia (Brazil). Naturwissenschaften 82:232–235CrossRefGoogle Scholar
  25. Prance GT (1982) Biological diversity in the tropics. Columbia University Press, New YorkGoogle Scholar
  26. Roosevelt AC, Housley RA, Imazio da Silveira M, Maranca S, Johnson R (1991) Eighth millennium pottery from a prehistoric shell midden in the Brazilian Amazon. Science 254:1621–1624PubMedCrossRefGoogle Scholar
  27. Salo J, Kalliola R, Häkkinen L, Mäkinen Y, Niemelä P, Puhakka M, Coley PD (1986) River dynamics and the diversity of Amazon lowland forest. Nature 322:254–258CrossRefGoogle Scholar
  28. Sioli H (1957) Sedimentation im Amazonasgebiet. Geol Rundschau 45:608–633CrossRefGoogle Scholar
  29. Weischet W (1977) Die ökologische Benachteiligung der Tropen. StuttgartGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Georg Irion
    • 1
  • José A. S. N. de Mello
    • 2
  • Jáder Morais
    • 3
  • Maria T. F. Piedade
    • 4
  • Wolfgang J. Junk
    • 5
    • 6
  • Linda Garming
    • 7
  1. 1.Senckenberg Institute of Marine ScienceWilhelmshavenGermany
  2. 2.National Institute of Amazon Research (INPA)ManausBrazil
  3. 3.Environmental GeologyState University of Ceará (UECE)FortalezaBrazil
  4. 4.National Institute of Amazon Research (INPA)ManausBrazil
  5. 5.State University of Amazonas (UEA), National Institute of Amazon Research (INPA)Manaus-AMBrazil
  6. 6.Working Group of Tropical EcologyMax-Planck-Institute for Evolutionary BiologyPlönGermany
  7. 7.Netherlands Organization for Applied Scientific Research (TNO)UtrechtThe Netherlands

Personalised recommendations