Amazonian Floodplain Forests pp 3-25

Part of the Ecological Studies book series (ECOLSTUD, volume 210)

| Cite as

An Introduction to South American Wetland Forests: Distribution, Definitions and General Characterization

Chapter

Abstract

This chapter provides an introduction to the ecology of wetland forests, their ecophysiology, distribution, species diversity, classification and use, with emphasis on Amazonia. Wetland forests occur in all continents and all regions except in deserts, high altitudes, and high latitudes. Their importance for humans and the environment is often underestimated because in developed or densely colonized regions such as Europe, North America, Australia, and the Indian sub-continent, many of them have already been destroyed or strongly modified. In other regions, such as Siberia, the Zaire River basin and the Amazon River basin they still cover large areas; however, scientists and politicians have placed little emphasis on their study and protection, or on developing sustainable management practices. In this chapter, we describe the general terminology for wetland forests and provide a classification of Amazonian wetland forests. We discuss the distribution of major wetland forests in South America and the impact of hydrology and nutrient status of water and soils. Distribution, species diversity, and the level of adaptation of trees of wetland forests is the result of long periods of evolution, without major extinction episodes. These conditions prevailed for many millions of years in the Amazon basin as shown by paleo-climatic and paleo-botanical evidence, leading to the development of the most species rich and highly adapted floodplain forest on the globe. In light of this history, we give examples for specific adaptations and survival strategies. Finally, Amazonian wetlands have been colonized by humans since their arrival on the sub-continent, about 12,000 years BP. More recently, European immigrants have used the wetlands for fishing, subsistence agriculture, timber exploitation and increasingly for cattle and water-buffalo ranching. Large scale ranching activities are especially detrimental for the forested Amazonian wetlands, because ranchers destroy wetland forests to increase the area of natural and planted pastures. This is also detrimental for forestry, fisheries, and the maintenance of biodiversity.

References

  1. Armstrong W, Brändle RA, Jackson MB (1994) Mechanism of flood tolerance in plants. Acta Botanica Neerlandica 43(4):307–358Google Scholar
  2. Ayres JM (1986) Uakaris and Amazonian flooded forest. Dissertation, CambridgeGoogle Scholar
  3. Ayres JM (1993) As matas de várzea do Mamirauá. In: Sociedade civil Mamirauá (ed) Estudos de Mamirauá, vol.1. Sociedade civil Mamirauá, Mamirauá, pp 1–123Google Scholar
  4. Berg CC (1972) Olmediae, Brosimeae. Flora Neotrop 7:171Google Scholar
  5. Blom CWPM (1990) Responses of flooding in weeds from river areas. In: Kawane S (ed) Biological approaches and evolutionary trends in plants. Academic Press, London, pp 81–94Google Scholar
  6. Bongers F, Engelen D, Klinge H (1985) Phytomass structure of natural plant communities on spodosols in southern Venezuela: the Bana woodland. Vegetatio 63:13–24CrossRefGoogle Scholar
  7. Burnham RJ, Johnson KR (2004) South American palaeobotany and the origins of neotropical rainforests. Phil Trans R Soc Lond B 359:1595–1610CrossRefGoogle Scholar
  8. Crawford RMM (1969) The physiological basis of flooding tolerance. Ber Dtsch Bot Ges 82(1/2):111–114Google Scholar
  9. Davis CC, Bel CD, Matthews S, Donoghue MJ (2002) Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. Proc Natl Acad Sci 99:6833–6837PubMedCrossRefGoogle Scholar
  10. Denevan WM (1976) The aboriginal population of Amazonia. In: Denevan WM (ed) The native population of the Americas. University of Wisconsin Press, Madison, pp 205–234Google Scholar
  11. Dister E (1983) Zur Hochwassertoleranz von Auenwaldbäumen and lehmigen Standorten. Verhandlungen der Gesellschaft für Ökologie 10:325–336Google Scholar
  12. Ducke A (1913) Explorações scientíficas no Estado do Pará. Bol Museu Paraense E Goeldi 7:100–198Google Scholar
  13. Ducke A (1949) Arvores amazônicas e sua propagação. Bol Museu Paraense E Goeldi 10:81–92Google Scholar
  14. Ducke A, Black GA (1953) Phytogeographical notes on the Brazilian Amazon. Anais Acad Brasil Ciênc 25:1–46Google Scholar
  15. Eva HD, Miranda EE, Bella CM, Gond V, Huber O, Sgrenzaroli M, Jones S, Coutinho A, Dorado A, Guimaraes M, Elvidge C, Achard F, Belward AS, Batholomé E, Baraldi A, Grandi D, Vogt P, Fritz S, Hartley A (2002) A vegetation map of South America. European Commission, Joint Research Centre, EUR 20159 EN, p 34Google Scholar
  16. Ferreira CS, Figueira AVO, Gribel R, Wittmann F, Piedade MTF (2010) Genetic variability, divergence and speciation in trees of periodically flooded forests of the Amazon: a case study of Himatanthus sucuuba (SPRUCE) WOODSON. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  17. Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Stud 126:47–68. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  18. Furch K, Junk WJ (1997b) The chemical composition, food value and decomposition of herbaceous plants and leaf-litter of the floodplain forest. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Stud 126:187–206. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  19. Gentil JML (1988) A juta na agricultura de várzea na área de Santarém – Méio Amazonaas. Bol Museu Paraense E Goeldi 4(2):118–199Google Scholar
  20. Gessner F (1968) Zur ökologischen Problematik der Überschwemmungswälder des Amazonas. Int Rev Ges Hydrobiol 53(4):525–547CrossRefGoogle Scholar
  21. Godoy JR, Petts G, Salo J (1999) Riparian flooded forests of the Orinoco and Amazon basin: a comparative review. Biodivers Conserv 8:551–586CrossRefGoogle Scholar
  22. Goulding M (1980) The fishes and the forest, exploration in Amazonian natural history. University of California Press, Berkeley/Los Angeles/LondonGoogle Scholar
  23. Goulding M, Smith NJH, Mahar DJ (1996) Floods of fortune: ecology and economy along the Amazon. Columbia University Press, New York, p 193Google Scholar
  24. Grime JP (1989) The stress debate: symptom of impending synthesis? Biol J Linn Soc 37:3–17CrossRefGoogle Scholar
  25. Hamilton S, Sippel S., Calheiros D., Melack J (1999) Chemical characteristics of Pantanal waters. In: EMBRAPA (ed) Anais do II Simpósio sobre Recursos Naturais e Sócio-econômicos do Pantanal, Corumbá, 1996. EMBRAPA, Corumbá, pp 89–100Google Scholar
  26. Hendry GAF, Brocklebank KJ (1985) Iron-induced oxygen radical metabolism in waterlogged plants. New Phytol 101:199–206CrossRefGoogle Scholar
  27. Huber J (1910) Matas e madeiras amazônicas. Boletim do Museo Goeldi Belém 6:91–203Google Scholar
  28. Huber O (1982) Significance of savanna vegetation in the Amazon territory of Venezuela. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 221–244Google Scholar
  29. Hueck K (1966) Die Wälder Südamerikas. Gustav Fischer Verlag, Stuttgart, pp 422Google Scholar
  30. Ilhardt BL, Verry ES, Palik BJ (2000) Defining riparian areas. In: Verry ES, Hornbeck JW, Dolloff CA (eds) Riparian management in forests of the continental eastern United States. Lewis Publishers, Boca Raton/London/New York/Washington DC, pp 23–42Google Scholar
  31. Irion G (1984a) Clay minerals of Amazon soils. In: Sioli H (ed) The Amazon – limnology and landscape ecology of a mighty tropical river and its Basin, pp 537–579. The Hague, Boston, Lancaster (Dr. W. Junk)Google Scholar
  32. Irmler U (1977) Inundation–forest types in the vicinity of Manaus. Biogeographica 8:17–29Google Scholar
  33. Ishima IH (1998) Estudos dendrocronológicos e determinação da idade de árvores das matas ciliares do Pantanal Sul-Matogrossense. Dissertation, Universidade Federal de São Carlos, São CarlosGoogle Scholar
  34. Joly CA (1991) Flooding tolerance in tropical trees. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen deprivation. SPB Academic Publishing bV, The Hague, pp 23–34Google Scholar
  35. Joly CA, Crawford RMM (1982) Variation in tolerance and metabolic responses to flooding in some tropical trees. J Experiment Bot 33:799–809CrossRefGoogle Scholar
  36. Junk WJ (1980) Áreas inundáveis - um desafio para limnologia. Acta Amazonica 10(4):775–795Google Scholar
  37. Junk WJ (1983) Ecology of swamps in the Middle Amazon. In: Gore AJP (ed) Ecosystems of the world. Mires: Swamp, Bog, Fen and Moor, B. Regional Studies. Elsevier, Amsterdam, pp 269–294Google Scholar
  38. Junk WJ (1989) Flood tolerance and tree distribution in central Amazonian floodplains. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic Press, New York, pp 47–64Google Scholar
  39. Junk WJ (1993) Wetlands of tropical South America. In: Whigham D, Hejny S, Dykyjova D (eds) Wetlands of the world. Junk Publications, Dordrecht, pp 679–739Google Scholar
  40. Junk WJ (ed) (1997a) The Central Amazon floodplains. Ecology of a pulsing system. Springer, Berlin/Heidelberg/New York, pp 525Google Scholar
  41. Junk WJ (1997b) General aspects of floodplain ecology with special reference to Amazonian floodplains. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Studies 126:3–20. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  42. Junk WJ (2002) Long-term environmental trends and the future of tropical wetlands. Environ Conserv 29(4):414–435CrossRefGoogle Scholar
  43. Junk WJ (2005) Flood pulsing and the linkages between terrestrial, aquatic, and wetland systems. Verh Int Ver Theor Angew Limnol 29(1):11–38Google Scholar
  44. Junk WJ, Barley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127Google Scholar
  45. Junk WJ, Piedade MTF (1997) Plant life in the floodplain with special reference to herbaceous plants. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:147–186. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  46. Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) (2000a) The central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers b.V, LeidenGoogle Scholar
  47. Junk WJ, Wantzen KM (2004) The flood pulse concept: new aspects, approaches, and applications – an update. In: Welcomme RL, Petr T (eds) Proceedings of the second international symposium on the management of large rivers for fisheries, vol 2. Food and agriculture organization & Mekong River commission. FAO Regional Office for Asia and the Pacific, Bangkok. RAP Publication 2004/16, pp 117–149Google Scholar
  48. Junk WJ, Piedade MTF (2004) Status of knowledge, ongoing research, and research needs in Amazonian wetlands. Wetlands Ecol Manage 12:597–609CrossRefGoogle Scholar
  49. Junk WJ, Piedade MTF (2005) Amazonian wetlands. In: Fraser LH, Keddy PA (eds) Large wetlands: their ecology and conservation. Cambridge University Press, Cambridge, pp 63–117Google Scholar
  50. Kalliola R, Puhakka M, Danjoy W (1993) Amazonia Peruana – Vegetacion humeda tropical en el llano subandino. Gummerus Printing, JyväskyläGoogle Scholar
  51. Keel SHK, Prance GT (1979) Studies of the vegetation of a white-sand black-water igapó (Rio Negro, Brazil). Acta Amazonica 9:645–655Google Scholar
  52. Kellman M, Tackaberry R, Brokaw N, Meave J (1994) Tropical gallery forests. Natl Geo Res Explor 10(1):92–103Google Scholar
  53. Klinge H (1978a) Litter production in tropical ecosystems. Malayan Nat J 30(2):415–422Google Scholar
  54. Klinge H, Medina E, Herrera R (1977) Studies on the ecology of Amazon Caatinga forest in southern Venezuela. Acta Cient Venez 28:270–276Google Scholar
  55. Klinge H, Medina E (1979) Rio Negro caatingas and campinas, Amazonas States of Venezuela and Brazil. In: Specht RL (ed) Heathlands and related shrublands. Descriptive studies. Ecosystems of the World, vol 9A. Elsevier, Amsterdam, pp 483–488Google Scholar
  56. Klinge H, Junk WJ, Revilla CJ (1990) Status and distribution of forested wetlands in tropical South America. Forest Ecol Manage 33/34:81–101. Elsevier, AmsterdamGoogle Scholar
  57. Kubitzki K (1989a) The ecogeographical differentiation of Amazonian inundation forests. Plant Syst Evol 162:285–304CrossRefGoogle Scholar
  58. Kubitzki K (1989b) Amazonas-Tiefland und Guayana-Hochland – historische und ökologische Aspekte der Florenentwicklung. Amazoniana 11:1–12Google Scholar
  59. Lacerda LD, Conde JE, Kjerfve B, Alvarez-León R, Alarcón A, Polanía J (2002) American Mangroves. In: Lacerda LD (ed) Mangrove ecosystems. Function and management. Springer, Berlin/Heidelberg/New York, pp 1–62Google Scholar
  60. Lopez OR, Kursar TA (1999) Flood tolerance of four tropical tree species. Tree Physiol 19:925–932PubMedCrossRefGoogle Scholar
  61. Lundberg JG, Marshall LG, Guerrero J, Horton B, Malabarba MCSL, Wesselingh F (1998) The stage for neotropical fish diversification. In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS (eds) Phylogeny and classification of Neotropical fishes. EDIPUCRS, Porto Alegre, pp 13–48Google Scholar
  62. McCormick JF (1979) A summary of the national riparian symposium. In: U.S. department of agriculture, forest service (ed) Strategies for protection and management of floodplain wetlands and other riparian ecosystems, Ge Tech Rep WO-12 US. Department of Agriculture, Forest Service, Washington DC, pp 362–363Google Scholar
  63. Meave J, Kellman M (1994) Maintenance of rain forest diversity in riparian forests of tropical savannas: implications for species conservation during Pleistocene drought. J Biogeogr 21:121–135CrossRefGoogle Scholar
  64. Meave J, Kellman M, MacDougall A, Rosales J (1991) Riparian habitats as tropical forest refugia. Global Ecol Biogeogr Lett 1:69–76CrossRefGoogle Scholar
  65. Mitsch WJ, Gosselink JG (2000) Wetlands. Wiley, New YorkGoogle Scholar
  66. Moreira E (1970) Os Igapós e seu aproveitaniento. Imprensa Universitaria, Belém – ParáGoogle Scholar
  67. Nunes da Cunha C, Junk WJ (1999) Composição florística de capões e cordilheiras: localização das espécies lenhosas quanto ao gradiente de inundação no Pantanal de Poconé, MT – Brasil. In: EMBRAPA (ed) Anais do II Simpósio sobre Recursos Naturais e Sócio-economicos do Pantanal. Manejo e Conservação. EMBRAPA, Corumbá, pp 17–28Google Scholar
  68. Odum EP (1981) Foreword. In: Clark JR, Benforado J (eds) Wetlands of bottomland hardwood forests. Elsevier, Amsterdam, pp 8–10Google Scholar
  69. Ohly JJ (2000a) Artificial pastures on Central Amazonian floodplains. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The Central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers bV, Leiden, The Netherlands, pp 291–311Google Scholar
  70. Oliveira Wittmann A de, Lopes A, Conserva A dos S, Piedade MTF (2010) Germination and seedling establishment in floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  71. Parolin P, Lucas C, Piedade MTF, Wittmann F (2010) Drought responses of extremely flood tolerant trees of Amazonian floodplains. Annal Bot 105(1):129–139Google Scholar
  72. Piedade MTF, Ferreira CS, Oliveira Wittmann A de, Buckeride M, Parolin P (2010) Biochemistry of Amazonian floodplain trees. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  73. Pires JM (1961) Esboço fitogeografico da Amazonia. Rev Soc Agron Vet Pará 7:3–8Google Scholar
  74. Prance GT (1973) Phytogeographic support to the theory of Pleistocene forest refuges in the Amazon basin. Acta Amazonica 3:5–28Google Scholar
  75. Prance GT (1979) Notes on the vegetation of Amazonia. 3. The terminology of Amazonian forest types subject to inundation. Brittonia 31:26–38CrossRefGoogle Scholar
  76. Puhakka M, Kalliola R (1993) La vegetación en áreas de inundación en la selva baja de la Amazonia Peruana. In: Kalliola R, Puhakka M, Danjoy W (eds) Amazonia Peruana: Vegetación húmeda tropical en el llano subandino. Proyecto Amazonia, Turku, pp 113–138Google Scholar
  77. Queiroz HL, Peralta N (2010) Protected areas in Amazonian várzea and their role in its conservation: the case of Mamirauá Sustainable Development Reserve (MSDR). In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  78. Richards PW (1952) The tropical rain forest. Cambridge University Press, LondonGoogle Scholar
  79. Rodrigues RR (2000) Uma discussão nomenclatural das formações ciliares. In: Rodrigues RR, Leitão Filho H de F (eds) Matas ciliares: conservação e recuperação. EDUSP, FAPESP, São Paulo, pp 91–99Google Scholar
  80. Rodrigues WA (1961) Estudo preliminar de mata de várzea alta de uma ilha do baixo Rio Negro de solo argiloso e umido. Publicação número 10 do Instituto Nacional de Pesquisas da Amazônia, ManausGoogle Scholar
  81. Roosevelt AC (1999) Twelve thousand years of human-environment interaction in the Amazon Floodplain. In: Padoch C, Ayres JM, Pinedo-Vasquez M, Henderson A (eds) Várzea: diversity, development, and conservation of Amazonia’s whitewater floodplains. The New York Botanical Garden Press, New York, pp 371–392Google Scholar
  82. Rosales J, Petts G, Knab-Vispo C (2001) Ecological gradients in riparian forests of the lower Caura River, Venezuela. Plant Ecol 152(1):101–118Google Scholar
  83. Salo J, Kalliola R, Häkkinen L, Mäkinen Y, Niemelä P, Puhakka M, Coley PD (1986) River dynamics and the diversity of Amazon lowland forest. Nature 322:254–258CrossRefGoogle Scholar
  84. Scholander PF, Perez MO (1968) Sap tension in flooded trees and bushes of the Amazon. Plant Physiol 43:1870–1873PubMedCrossRefGoogle Scholar
  85. Sioli H (1956) Über Natur und Mensch im brasilianischen Amazonasgebiet. Erdkunde 10(2):89–109Google Scholar
  86. Sioli H (1984a) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Dr. W. Junk Publishers, The NetherlandsGoogle Scholar
  87. Spruce R (1908) Notes of a botanist on the Amazon and Andes. MacMillan, LondonGoogle Scholar
  88. Steyermark JA (1982) Relationships of some Venezuelan refuges with lowland tropical Floras. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 182–220Google Scholar
  89. Takeuchi M (1962) The structure of the Amazonian vegetation. 6. Igapó. J Fac Sci Univ Tokyo Sect Bot 3:297–304Google Scholar
  90. Thomaz SM, Agostinho AA, Hahn NS (2004) The upper Paraná River and its floodplain: physical aspects, ecology and conservation. Blackhuys Publishers, LeidenGoogle Scholar
  91. Voesenek LACJ, van der Sman AJM, Harren FJM, Blom CWPM (1992) An amalgamation between hormone physiology and plant ecology: a review on flooding resistance and ethylene. J Plant Growth Regulat 11(3):171–188CrossRefGoogle Scholar
  92. Wantzen KM (2003) Cerrado streams – characteristics of a threatened freshwater ecosystem type on the tertiary shields of Central South America. Amazoniana 17(3/4):481–502Google Scholar
  93. Wantzen KM, Jule C, Tockner K, Junk WJ (2007) Riparian wetlands of tropical streams.In: Dudgeon D, Cressa C (eds) Tropical stream ecology. Elsevier, LondonGoogle Scholar
  94. Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. Forest Ecol Management 196:199–212CrossRefGoogle Scholar
  95. Wittmann F, Schöngart J, Montero JC, Motzer M, Junk WJ, Piedade MTF, Queiroz HL, Worbes M (2006) Tree species composition and diversity gradients in white-water forests across the Amazon Basin. J Biogeogr 33:1334–1347CrossRefGoogle Scholar
  96. Worbes M (1983) Vegetationskundliche Untersuchungen zweier Überschwemmungswälder in Zentralamazonien – vorläufige Ergebnisse. Amazoniana 8(1):47–66Google Scholar
  97. Worbes M (1984) Periodische Zuwachszonen an Bäumen zentralamazonischer Überschwemmung­swälder. Naturwissenschaften 71:157–158CrossRefGoogle Scholar
  98. Worbes M, Junk WJ (1989) Dating tropical trees by Means of 14C from Bomb tests. Ecology 70(2):503–507CrossRefGoogle Scholar
  99. Worbes M, Fichtler E (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  100. Zeilhofer P (1996) Geoökologische Charakterisierung des nördlichen Pantanal von Mato Grosso, Brasilien, anhand multitemporaler Landsat Thematic Mapper-Daten. Dissertation, Herbert Utz Verlag, MünchenGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.State University of Amazonas (UEA), National Institute of Amazon Research (INPA)ManausBrazil
  2. 2.Working Group of Tropical EcologyMax-Planck-Institute for Evolutionary BiologyPlönGermany
  3. 3.National Institute of Amazon Research (INPA)ManausBrazil

Personalised recommendations