Fire in the Earth System

Chapter

Abstract

Fire is an important component of the Earth System that is tightly coupled with climate, vegetation, biogeochemical cycles, and human activities. Observations of how fire regimes change on seasonal to millennial timescales are providing an improved understanding of the hierarchy of controls on fire regimes. Climate is the principal control on fire regimes, although human activities have had an increasing influence on the distribution and incidence of fire in recent centuries. Understanding of the controls and variability of fire also underpins the development of models, both conceptual and numerical, that allow us to predict how future climate and land-use changes might influence fire regimes. Although fires in fire-adapted ecosystems can be important for biodiversity and ecosystem function, positive effects are being increasingly outweighed by losses of ecosystem services. As humans encroach further into the natural habitat of fire, social and economic costs are also escalating. The prospect of near-term rapid and large climate changes, and the escalating costs of large wildfires, necessitates a radical re-thinking and the development of approaches to fire management that promote the more harmonious co-existence of fire and people.

Keywords

Wildfire Fire regimes Fire patterns 

References

  1. Allen CD, Savage M, Falk DA, Suckling KF, Swetnam TW, Schulke T, Stacey PB, Morgan P, Hoffman M, Klingel JT (2002) Ecological restoration of southwestern ponderosa pine ecosystems: A broad perspective. Ecol Appl 12:1418–1433.CrossRefGoogle Scholar
  2. Amiro BD, Todd JB, Wotton BM, Logan KA, Flannigan MD, Stocks BJ, Mason JA, Martell DL, Hirsch KG (2001) Direct carbon emissions from Canadian forest fires 1959–1999. Can J For Res 31:512–525.CrossRefGoogle Scholar
  3. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15:955–966.CrossRefGoogle Scholar
  4. Archibald S, Roy DP, van Wilgen B, Scholes RJ (2009) What limits fire? An examination of drivers of burnt area in Southern Africa. Glob Chang Biol 15:613–630.CrossRefGoogle Scholar
  5. Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter H, Korhola A, Kulmala M, O’Donnell D, Schurgers S, Sorvari S, Vesala T (in revision) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci.Google Scholar
  6. Arno SF, Fiedler CE (2004) Mimicking Nature’s Fire: Restoring Fire-Prone Forests in the West (242 pp). Washington, DC: Island Press.Google Scholar
  7. Arora VK, Boer GJ (2005) Fire as an interactive component of dynamic vegetation models. J Geophys Res 110:1–20.CrossRefGoogle Scholar
  8. Ashe B, McAneney KJ, Pitman AJ (2009) Total cost of fire in Australia. J Risk Res 12:121–136.CrossRefGoogle Scholar
  9. Atahan P, Dodson JR, Itzstein-Davey F (2004) A fine-resolution Pliocene pollen and charcoal record from Yallalie, south-western Australia. J Biogeogr 31:199–205.CrossRefGoogle Scholar
  10. Bachelet D, Lenihan J, Neilson R, Drapek R, Kittel T (2005) Simulating the response of natural ecosystems and their fire regimes to climatic variability in Alaska. Can J For Res 35:2244–2257.CrossRefGoogle Scholar
  11. Balshi MS, McGuire AD, Duffy P, Flannigan M, Kicklighter DW, Melillo J (2009) Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Glob Chang Biol 15:1491–1510.CrossRefGoogle Scholar
  12. Balshi MS, McGuire AD, Zhuang Q, Melillo J, Kicklighter DW, Kasischke E, Wirth C, Flannigan M, Harden J, Clein JS, Burnside TJ, McAllister J, Kurz WA, Apps M, Shvidenko A (2007) The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. J Geophys Res 112:G02029.CrossRefGoogle Scholar
  13. Balzter H, Gerard F, Weedon G, Grey W, Combal B, Bartholome E, Bartalev S, Los S (2007) Coupling of vegetation growing season anomalies with hemispheric and regional scale climate patterns in Central and East Siberia. J Clim 20:3713–3729.CrossRefGoogle Scholar
  14. Bartlein P, Hostetler SW, Shafer SL, Holman JO, Solomon AM (2008) Temporal and spatial structure in a daily wildfire-start data set from the western United States (1986–96). Int J Wildland Fire 17:8–17.CrossRefGoogle Scholar
  15. Beerling DJ, Osborne CP (2006) The origin of the savanna biome. Glob Chang Biol 12:2023–2031.CrossRefGoogle Scholar
  16. Belcher CM, McElwain JC (2008) Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 321:1197–1200.CrossRefGoogle Scholar
  17. Bella CM, Jobbágy EG, Paruelo JM, Pinnock S (2006) Continental fire density patterns in South America. Glob Ecol Biogeogr 15:192–199.CrossRefGoogle Scholar
  18. Beringer J, Hutley L, Tapper N, Cernusak L (2007) Savanna fires and their impact on net ecosystem productivity in North Australia. Glob Chang Biol 13:990–1004.CrossRefGoogle Scholar
  19. Berner RA (1999) Atmospheric oxygen over Phanerozoic time. Proc Natl Acad Sci 96:10955–10957.CrossRefGoogle Scholar
  20. Bian H, Chin M, Kawa SR, Duncan B, Arellano A, Kasibhatla P (2007) Sensitivity of global CO simulations to uncertainties in biomass burning sources. J Geophys Res Atmos 112. doi: 23310.21029/22006JD008376.Google Scholar
  21. Biganzoli F, Wiegand T, Batista WB (2009) Fire-mediated interactions between shrubs in a South American temperate savannah. Oikos 118:1383–1395.CrossRefGoogle Scholar
  22. Bird MI, Cali JA (1998) A million-year record of fire in sub-Saharan Africa. Nature 394:767–769.CrossRefGoogle Scholar
  23. Bird MI, Cali JA (2002) A revised high-resolution oxygen-isotope chronology for ODP-668B: Implications for Quaternary biomass burning in Africa. Glob Planet Change 33:73–76.CrossRefGoogle Scholar
  24. Bonan GB (2008) Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449.CrossRefGoogle Scholar
  25. Bond WJ, Midgley JJ (1995) Kill thy neighbour — an individualistic argument for the evolution of flammability. Oikos 73:79–85.CrossRefGoogle Scholar
  26. Bond WJ, van Wilgen BW (1996) Fire and Plants (263 pp). London: Chapman & Hall.CrossRefGoogle Scholar
  27. Bond T, Streets D, Yarber K, Nelson S, Wo J-H, Klimont Z (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res 109. doi: 10.1029/2003JD003697.Google Scholar
  28. Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394.CrossRefGoogle Scholar
  29. Bond WJ (2008) What limits trees in C4 grasslands and savannas? Annu Rev Ecol Evol Syst 39:641–659.CrossRefGoogle Scholar
  30. Bowman DMJS (2000) Australian Rainforests: Islands of Green in a Land of Fire (344 pp). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP (2009) Fire in the Earth system. Science 324:481–484.CrossRefGoogle Scholar
  32. Brown JK, Smith JK (2000) Wildland Fire in Ecosystems: Effects of Fire on Flora (p. 257). Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.Google Scholar
  33. Brown KJ, Hebda RJ (2002) Origin, development, and dynamics of coastal temperate conifer rainforests of southern Vancouver Island, Canada. Can J For Res 32:353–372.CrossRefGoogle Scholar
  34. Bush MB, Listopad MCS, Silman MR (2007a) A regional study of Holocene climate change and human occupation in Peruvian Amazonia. J Biogeogr 34:1342–1356.CrossRefGoogle Scholar
  35. Bush MB, Silman MR, de Toledo MB, Listopad C, Gosling WD, Williams C, de Oliveira PE, Krisel C (2007b) Holocene fire and occupation in Amazonia: Records from two lake districts. Philos Trans R Soc B 362:209–218.CrossRefGoogle Scholar
  36. Bushfire Cooperative Research Centre (2006) Climate change and its impacts on the management of bushfire. Fire Note 4,http://www.bushfirecrc.com/publications/downloads/Firenote_climate190906.pdf Firenote_climate190906.pdf.
  37. Campbell J, Donato D, Azuma D, Law B (2007) Pyrogenic carbon emission from a large wildfire in Oregon, United States. J Geophys Res 112. doi: 10.1029/2007JG000451.Google Scholar
  38. Carcaillet C, Ali AA, Blarquez O, Genries A, Mourier B, Bremond L (2009) Spatial variability of fire history in subalpine forests: From natural to cultural regimes. Ecoscience 16:1–12.CrossRefGoogle Scholar
  39. Carcaillet C, Almquist H, Asnong H, Bradshaw RHW, Carrión JS, Gaillard MJ, Gajewski K, Haas JN, Haberle SG, Hadorn P, Müller SD, Richard PJH, Richoz I, Rösch M, Sánchez Goñi MF, Von Stedingk H, Stevenson AC, Talon B, Tardy C, Tinner W, Tryterud E, Wick L, Willis KJ (2002) Holocene biomass burning and global dynamics of the carbon cycle. Chemosphere 49:845–863.CrossRefGoogle Scholar
  40. Cardoso MF, Hurtt GC, Moore B, Nobre CA, Prins EM (2003) Projecting future fire activity in Amazonia. Glob Chang Biol 9:656 – 669.CrossRefGoogle Scholar
  41. Carmona-Moreno C, Belward A, Malingreau J-P, Hartley A, Garcia-Alegre M, Antonovskiy M, Buchshtaber V, Pivovarov V (2005) Characterizing interannual variations in global fire calendar using data from Earth observing satellites. Glob Chang Biol 11:1537.CrossRefGoogle Scholar
  42. Cary G (2002) Importance of a changing climate for fire regimes in Australia. In R Bradstock, J Williams, AM Gill (Eds), Flammable Australia: The Fire Regimes and Biodiversity of a Continent (pp. 26–46). Cambridge: Cambridge University Press.Google Scholar
  43. Castello JD, Leopold DJ, Smallidge PJ (1995) Pathogens, patterns, and processes in forest ecosystems. BioScience 45:16–24.CrossRefGoogle Scholar
  44. Charles RW, Michael M (2009) Wildland fire mitigation networks in the western United States. Disasters 33:721–746.CrossRefGoogle Scholar
  45. Chuvieco E, Giglio L, Justice C (2008) Global characterization of fire activity: Toward defining fire regimes from Earth observation data. Glob Chang Biol 14:1488–1502.CrossRefGoogle Scholar
  46. Clark JS (1990) Fire and climate change during the last 750 yr in northwestern Minnesota. Ecol Monogr 60:135–159.CrossRefGoogle Scholar
  47. Cochrane M (2003) Fire science for rainforests. Nature 421:913–919.CrossRefGoogle Scholar
  48. Cochrane MA, Alencar A, Schulze MD, Souza CM Jr, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284:1832–1835.CrossRefGoogle Scholar
  49. Cochrane MA, Barber CP (2009) Climate change, human land use and future fires in the Amazon. Glob Chang Biol 15:601–612.CrossRefGoogle Scholar
  50. Cofer W, Winstead E, Stocks B, Goldammer J, Cahoon DR (1998) Crown fire emissions of CO2, CO, H2, CH4 and TNNMHC from a dense jack pine boreal forest fire. Geophys Res Lett 25:3919–3922.CrossRefGoogle Scholar
  51. Collinson ME, Steart DC, Scott AC, Glasspool IJ, Hooker JJ (2007) Episodic fire, runoff and deposition at the Palaeocene-Eocene boundary. J Geol Soc 164:87–97.CrossRefGoogle Scholar
  52. Conedera M, Tinner W, Neff C, Meurer M, Dickens AF, Krebs P (2009) Reconstructing past fire regimes: Methods, applications, and relevance to fire management and conservation. Quat Sci Rev 28:555–576.CrossRefGoogle Scholar
  53. Cook GD, Meyer CP (2009) Culture, ecology, and economy of fire management in North Australian savannas: Rekindling the Wurrk tradition. In J Russell-Smith, P Whitehead, P Cooke (Eds), Fire, Fuels and Greenhouse Gases (p. 416). Melbourne, VIC: CSIRO Publishing.Google Scholar
  54. Cramer W, Kicklighter DW, Bondeau A, Moore III B, Churkina G, Nemry B, Ruimy A, Schloss A and the participants of the Potsdam NPP Model Intercomparison (1999) Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Glob Chang Biol 5(Suppl. 1):1–15.CrossRefGoogle Scholar
  55. Crevoisier C, Shevliakova E, Gloor M, Wirth C, Pacala S (2007) Drivers of fire in the boreal forests: Data constrained design of a prognostic model of burned area for use in dynamic global vegetation models. Geophys Res Lett 112. doi: 10.1029/2006JD008372.Google Scholar
  56. Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678.CrossRefGoogle Scholar
  57. D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23:63–87.Google Scholar
  58. Dale L (2009) The True Cost of Wildfire in the Western U.S. (p. 16). Lakewood, CO: Western Forestry Leadership Coalition.Google Scholar
  59. Daniau A-L, Harrison SP, Bartlein PJ (in press) Fire regimes during the last glacial. Quat Sci Rev.Google Scholar
  60. Daniau A-L, Tinner W, Bartlein PJ, Harrison SP, Prentice IC, Brewer S, Friedlingstein P, Harrison-Prentice TI, Inoue J, Marlon JR, et al. (submitted) Hemispherically-asynchronous changes in fire consistent with deglacial climate changes. Nat Geosci.Google Scholar
  61. DeFries RS, Morton DC, Werf GRVd, Giglio L, Randerson JT, Collatz GJ, Houghton RA, Kasibhatla PS, Shimabukuro Y (2008) Fire-related carbon emissions from land use transitions in Southern Amazonia. Geophys Res Lett 35. doi: 10.1029/2008GL035689.Google Scholar
  62. Dentener F, Kinne S, Bond T, Boucher O, Cofala J, Generoso S, Ginoux P, Gong S, Hoelzemann JJ, Ito A, Marelli L, Penner JE, Putaud JP, Textor C, Schulz M, van der Werf GR, Wilson J (2006) Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmospheric Chemistry and Physics 6:4321–4344.CrossRefGoogle Scholar
  63. Dodson JR, Robinson M, Tardy CT (2005) Two fine-resolution Pliocene charcoal records and their bearing on pre-human fire frequency in south-western Australia. Austral Ecol 30:592–599.CrossRefGoogle Scholar
  64. Dombeck MP, Williams JE, Wood CA (2004) Wildfire policy and public lands: Integrating scientific understanding with social concerns across landscapes. Conserv Biol 18:883–889.CrossRefGoogle Scholar
  65. Donovan GH, Brown TC (2007) Be careful what you wish for: The legacy of Smokey Bear. Front Ecol Environ 5:73–79.CrossRefGoogle Scholar
  66. Drobyshev I, Goebel PC, Hix DM, Corace RG, Semko-Duncan ME (2008) Pre- and post-European settlement fire history of red pine dominated forest ecosystems of Seney National Wildlife Refuge, Upper Michigan. Can J For Res 38:2497–2514.CrossRefGoogle Scholar
  67. Dwyer E, Gregoire J-M, Pereira JMC (2000) Climate and vegetation as driving factors in global fire activity. In JB Innes, MB Beniston, MM Verstraete (Eds), Biomass Burning and Its Inter-Relationships with the Climate System (pp. 171–191). Advances in Global Change Research. New York, NY: Springer.CrossRefGoogle Scholar
  68. EEPSEA and WWF (1998) The Indonesian fires and haze of 1997: The economic toll. EEPSEA Research Report rr1998051. Singapore: Economic and Environment Program for Southeast Asia (EEPSEA)/World Wide Fund for Nature (WWF).Google Scholar
  69. Ellicott E, Vermote E, Giglio L, Roberts G (2009) Estimating biomass consumed from fire using MODIS FRE. Geophys Res Lett 36. doi: 10.1029/2009GL038581.Google Scholar
  70. EPICA Community Members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444:195–198.CrossRefGoogle Scholar
  71. FAO (2007) Fire Management: Global Assessment 2006, FAO Forestry Paper 0258–6150 (p. 151). Food and Agriculture Organization of the United Nations.Google Scholar
  72. Fellows AW, Goulden ML (2008) Has fire suppression increased the amount of carbon stored in western U.S. forests? Geophys Res Lett 35. doi: 10.1029/2008GL033965.Google Scholar
  73. Fernandez P, Botelho H (2003) A review of prescribed burning effectiveness in fire hazard reduction. Int J Wildland Fire 12:117–128.CrossRefGoogle Scholar
  74. Ferretti DF, Miller JB, White JWC, Etheridge DM, Lassey KR, Lowe DC, Meure CMM, Dreier MF, Trudinger CM, van Ommen TD, Langenfelds RL (2005) Unexpected changes to the global methane budget over the past 2000 years. Science 309:1714–1717.CrossRefGoogle Scholar
  75. Field CB, Raupach MR (2004) The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World (526 pp). Washington, DC: Island Press.Google Scholar
  76. Field RD, Van der Werf G, Shen SSP (2009) Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat Geosci 2:185–188.CrossRefGoogle Scholar
  77. Fischer H, Behrens M, Bock M, Richter U, Schmitt J, Loulergue L, Chappellaz J, Spahni R, Blunier T, Leuenberger M, Stocker TF (2008) Changing boreal methane sources and constant biomass burning during the last termination. Nature 452. doi: 10.1038/nature06825.Google Scholar
  78. Fisher JL, Loneragan WA, Dixon K, Delaney J, Veneklaas EJ (2009) Altered vegetation structure and composition linked to fire frequency and plant invasion in a biodiverse woodland. Biol Conserv 142:2270–2281.CrossRefGoogle Scholar
  79. Flanner MG, Zender CS, Randerson JT, Rasch PJ (2007) Present-day forcing and response from black carbon in snow. J Geophys Res 112. doi: 10.1029/2006JD008003.Google Scholar
  80. Flannigan M, Campbell I, Wotton M, Carcaillet C, Richard PJH, Bergeron Y (2001) Future fire in Canada’s boreal forest: Paleoecology results and general circulation model – regional climate model simulations. Can J For Res 31:854–864.CrossRefGoogle Scholar
  81. Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ (2005) Future area burned in Canada. Clim Change 72:1–16.CrossRefGoogle Scholar
  82. Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for global wildland fire. Int J Wildland Fire 18:483–507.CrossRefGoogle Scholar
  83. Frolking S, Palace MW, Clark DB, Chambers JQ, Shugart HH, Hurtt GC (2009) Forest disturbance and recovery: A general review in the context of space-borne remote sensing of impacts on aboveground biomass and canopy structure. J Geophys Res 114:1–27.CrossRefGoogle Scholar
  84. Fuentes ER, Segura AM, Holmgren H (1994) Are the responses of matorral shrubs different from those in an ecosystem with a reputed fire history? In JM Moreno, WC Oechel (Eds), The Role of Fire in Mediterranean-Type Ecosystems (pp. 16–25). New York, NY: Springer.CrossRefGoogle Scholar
  85. Fulé PZ, Crouse JE, Heinlein TA, Moore MM, Covington WW, Verkamp G (2003) Mixed-severity fire regime in a high-elevation forest: Grand Canyon, Arizona. Landsc Ecol 18:465–486.CrossRefGoogle Scholar
  86. Galanter M, Levy II H, Carmichael G (2000) Impacts of biomass burning on tropospheric CO, NOx, and O3. J Geophys Res Atmos 105:6633–6653.CrossRefGoogle Scholar
  87. Gavin DG, Hu FS, Lertzman K, Corbett P (2006) Weak climatic control of stand-scale fire history during the late Holocene. Ecology 87:1722–1732.CrossRefGoogle Scholar
  88. Giglio L, Randerson JT, van der Werf GR, Collatz GJ, Kasibhatla P (2006) Global estimation of burned area using MODIS active fire observations. Atmos Chem Phys Discuss 5:11091–11141.CrossRefGoogle Scholar
  89. Gill AM (1977) Management of fire-prone vegetation for plant species conservation in Australia. Search 8:20–26.Google Scholar
  90. Gill AM, Woinarski JCZ, York A (1999). Australia’s Biodiversity – Responses to Fire – Plants, Birds and Invertebrates. Biodiversity Technical Paper, Commonwealth of Australia.Google Scholar
  91. Gill MA (2005) Landscape fires as social disasters: An overview of ‘the bushfire problem’. Environ Hazards 6:65–80.CrossRefGoogle Scholar
  92. Gillett NP, Weaver AJ, Zwiers FW, Flannigan MD (2004) Detecting the effect of climate change on Canadian forest fires. Geophys Res Lett 31. doi: 10.1029/2004GL020876.Google Scholar
  93. Girardin MP (2007) Interannual to decadal changes in area burned in Canada from 1781 to 1982 and the relationship to Northern Hemisphere land temperatures. Glob Ecol Biogeogr 16:557–566.CrossRefGoogle Scholar
  94. Girardin MP, Mudelsee M (2008) Past and future changes in Canadian boreal wildfire activity. Ecol Appl 18:391–406.CrossRefGoogle Scholar
  95. Glasspool IJ, Edwards D, Axe L (2004) Charcoal in the Silurian as evidence for the earliest wildfire. Geology 32:381–383.CrossRefGoogle Scholar
  96. Glover D (2001) The Indonesian fires and haze of 1997: The economic toll. In P Eaton, M Radojevic (Eds), Forest Fires and Regional Haze in Southeast Asia (pp. 227–236). New York, NY: Nova Science Publishers.Google Scholar
  97. Grace JB (2006) Structural Equation Modeling and Natural Systems (365 pp). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  98. Granström A (2001) Fire management for biodiversity in the European boreal forest. Scand J For Res 16(Suppl. 3):62–69.CrossRefGoogle Scholar
  99. Grimm EC (1984) Fire and other factors controlling the Big Woods vegetation of Minnesota in the mid-nineteenth century. Ecological Monographs 54:291–311.CrossRefGoogle Scholar
  100. Grissino-Mayer HD, Romme WH, Floyd ML, Hanna DD (2004) Climatic and human influences on fire regimes of the southern San Juan Mountains, Colorado, USA. Ecology 85:1708–1724.CrossRefGoogle Scholar
  101. Groisman PY, Sherstyukov BG, Razuvaev VN, Knight RW, Enloe JG, Stroumentova NS, Whitfield PH, Forland E, Hannsen-Bauer I, Tuomenvirta H, Aleksandersson H, Mescherskaya AV, Karl TR (2007) Potential forest fire danger over Northern Eurasia: Changes during the 20th century. Glob Planet Change 56:371–386.CrossRefGoogle Scholar
  102. Guyon P, Frank G, Welling M, Chand D, Artaxo P, Rizzo L, Nishioka G, Kolle O, Fritsch H, Dias MAFS, Gatti LV, Cordova M, Andreae MO (2005) Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia. Atmos Chem Phys Discuss 5:2791–2831.CrossRefGoogle Scholar
  103. Habeck J (1994) Using general land office records to assess forest succession in Ponderosa Pine/Douglas-fir forests in western Montana. Northwest Sci 68:69–78.Google Scholar
  104. Haberle SG, Ledru MP (2001) Correlations among charcoal records of fires from the past 16,000 years in Indonesia, Papua New Guinea, and Central and South America. Quat Res 55:97–104.CrossRefGoogle Scholar
  105. Hallett DJ, Mathewes RW, Walker RC (2003) A 1000-year record of forest fire, drought and lake-level change in southeastern British Columbia, Canada. Holocene 13:751–761.CrossRefGoogle Scholar
  106. Hansen J, Nazarenko L (2004) Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci USA 101:423–428.CrossRefGoogle Scholar
  107. Hao W, Ward D (1993) Methane production from global biomass burning. J Geophys Res 98:20657–20661.CrossRefGoogle Scholar
  108. Hastings MG, Jarvis JC, Steig EJ (2009) Anthropogenic impacts on nitrogen isotopes of ice-core nitrate. Science 324. DOI: 10.1126/science.1170510.Google Scholar
  109. Heinselman ML (1973) Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quat Res 3:329–382.CrossRefGoogle Scholar
  110. Heyerdahl EK, Brubaker LB, Agee JK (2001) Spatial controls of historical fire regimes: A multiscale example from the Interior West, USA. Ecol Soc 82:660–678.CrossRefGoogle Scholar
  111. Hope G, Kershaw AP, van der Kaars S, Xiangjun S, Liew PM, Heusser LE, Takahara H, McGlone M, Miyoshi N, Moss PT (2004) History of vegetation and habitat change in the Austral-Asian region. Quat Int 118–119:103–126.CrossRefGoogle Scholar
  112. Houghton RA, Hall F, Goetz SJ (2009) Importance of biomass in the global carbon cycle. J Geophys Res Biogeosci 114. doi: 10.1029/2009JG000935.Google Scholar
  113. Houweling S, van der Werf G, Klein Goldewijk K, Röckmann T, Aben I (2008) Early anthropogenic emissions and the variation of CH4 and 13CH4 over the last millennium. Glob Biogeochem Cycles 22. doi: 10.1029/2007GB002961.Google Scholar
  114. Hurteau MD, Koch GW, Hungate BA (2008) Carbon protection and fire risk reduction: Toward a full accounting of forest carbon offsets. Front Ecol Environ 6:493–498.CrossRefGoogle Scholar
  115. Hutto RL (2008) The ecological importance of severe wildfires: Some like it hot. Ecol Appl 18:1827–1834.CrossRefGoogle Scholar
  116. Ickoku C, Giglio L, Wooster MJ, Remner LA (2008) Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing Environ 112:2950–2962.CrossRefGoogle Scholar
  117. Ito A, Penner JE (2005) Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000. Glob Biogeochem Cycles 19. doi: 10.1029/2004GB002374.Google Scholar
  118. Ito A, Ito A, Akimoto H (2007) Seasonal and interannual variations in CO and BC emissions from open biomass burning in Southern Africa during 1998–2005. Glob Biogeochem Cycles 21:1–13.CrossRefGoogle Scholar
  119. Jaegle L, Steinberger L, Martin RV, Chance K (2005) Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss 130:407–423.CrossRefGoogle Scholar
  120. Jayachandran S (2005). Air quality and infant mortality during Indonesia’s massive wildfires in 1997. Bureau for Research in Economic Analysis of Development, Working Paper No. 95.Google Scholar
  121. Jones TP, Chaloner WG (1991) Fossil charcoal, its recognition and paleoatmospheric significance. Palaeogeogr Palaeoclimatol Palaeoecol 97:39–50.CrossRefGoogle Scholar
  122. JRC-EU (2005) SAFARI 2000 global burned area map, 1-km, Southern Africa, 2000. Data online from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee (http://daac.ornl.gov/S2K/guides/ http://spot_veg_burned.html). Joint Research Centre, European Commission (http://www.jrc.ec.europa.eu/). Ispra, Varese, Italy.
  123. Kajii Y, Kato S, Streets DG, Tsai NY, Shvidenko A, Nilsson S, McCallum I, Minko NP, Abushenko N, Altyntsev D, Khodzer TV (2002) Boreal forest fires in Siberia in 1998: Estimation of area burned and emissions of pollutants by advanced very high resolution radiometer satellite data. J Geophys Res 107:ACH 4-1–ACH 4-8.CrossRefGoogle Scholar
  124. Kasischke ES, Christensen NL, Stocks BJ (1995) Fire, global warming, and the carbon balance of boreal forests. Ecol Appl 5:437–451.CrossRefGoogle Scholar
  125. Kasischke ES, Bruhwiler LP (2002) Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. J Geophys Res 108:FFR 2-1–FFR 2-14.CrossRefGoogle Scholar
  126. Kasischke ES, Rupp TS, Verbyla DL (2006) Fire trends in the Alaskan boreal forest. In FS Chapin (Ed), Alaska’s Changing Boreal Forest (p. 368). New York, NY: Oxford University Press.Google Scholar
  127. Keeley JE, Rundel PW (2005) Fire and the Miocene expansion of C-4 grasslands. Ecol Lett 8:683–690.CrossRefGoogle Scholar
  128. Kipfmueller K, Baker WL (2000) A fire history of a subalpine forest in south-eastern Wyoming, USA. J Biogeogr 27:71–85.CrossRefGoogle Scholar
  129. Kitzberger T, Swetnam TW, Veblen TT (2001) Inter-hemispheric synchrony of forest fires and the El Niño-Southern Oscillation. Glob Ecol Biogeogr 10:315–326.CrossRefGoogle Scholar
  130. Klein Goldewijk K, van Drecht G (2006) HYDE3: Current and historical population and land cover. In AF Bouwman, T Kram, K Klein Goldewijk (Eds), Integrated Modelling of Global Environmental Change. An Overview of IMAGE 2.4. Bilthoven, The Netherlands: Netherlands Environmental Assessment Agency.Google Scholar
  131. Koch D, Hansen J (2005) Distant origins of Arctic black carbon: A goddard institute for space studies modelE experiment. J Geophys Res 110. doi: 10.1029/2004JD005296.Google Scholar
  132. Krawchuk M, Moritz M, Parisien M-A, Van Dorn J, Hayhoe K (2009) Global pyrogeography: The current and future distribution of wildfire. PLoS ONE 4:e5102.CrossRefGoogle Scholar
  133. Krawchuk MA, Cumming SG, Flannigan MD, Wein RW (2008) Biotic and abiotic regulation of lightning fire initiation in the mixed wood boreal forest. Ecology 87:458–468.CrossRefGoogle Scholar
  134. Krawchuk MA, Moritz MA (2009) Fire regimes of China: Inference from statistical comparison with the United States. Glob Ecol Biogeogr 18:626–639.CrossRefGoogle Scholar
  135. Krinner G, Viovy N, Noblet-Ducoudré Nd, Ogé J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles 19. doi: 10.1029/2003GB002199.Google Scholar
  136. Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N (2000) Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Glob Biogeochem Cycles 14:795–825.CrossRefGoogle Scholar
  137. Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET (2008) Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci USA 105:1551–1555.CrossRefGoogle Scholar
  138. Lafon CW, Grissino-Mayer HD (2007) Spatial patterns of fire occurrence in the central Appalachian Mountains and implications for wildland fire management. Phys Geogr 28:1–20.CrossRefGoogle Scholar
  139. Lavorel S, Flannigan M, Lambin E, Scholes M (2007) Vulnerability of land systems to fire: Interactions among humans, climate, the atmosphere, and ecosystems. Mitig Adapt Strat Glob Change 12:33–53.CrossRefGoogle Scholar
  140. Lavoué D, Liousse C, Cachier H, Stocks BJ, Goldammer JG (2000) Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. J Geophys Res 105:26871–26890.CrossRefGoogle Scholar
  141. Lehmann CER, Prior LD, Williams RJ, Bowman DMJS (2008) Spatio-temporal trends in tree cover of a tropical mesic savanna are driven by landscape disturbance. J Appl Ecol 45:1304–1311.CrossRefGoogle Scholar
  142. Lenihan J, Bachelet D, Neilson R, Drapek R (2008) Response of vegetation distribution, ecosystem productivity, and fire to climate change scenarios for California. Clim Change 87:215–230.CrossRefGoogle Scholar
  143. Lenihan JM, Daly C, Bachelet D, Neilson RP (1998) Simulating broad-scale fire severity in a dynamic global vegetation model. Northwest Sci 72:91–103.Google Scholar
  144. Lenton TM (2001) The role of land plants, phosphorus weathering and fire in the rise and regulation of atmospheric oxygen. Global Chang Biol 7:613–629.CrossRefGoogle Scholar
  145. Litvak ME, Miller S, Wofsy SC, Goulden M (2003) Effect of stand age on whole ecosystem CO2 exchange. J Geophys Res 108. doi: 10.1029/2001JD000854.Google Scholar
  146. Liu H, Randerson JT, Lindfors J, Chapin III FS (2005) Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective. J Geophys Res 110. doi: 10.1029/2004JD005158.Google Scholar
  147. Lohman DJ, Bickford D, Sodhi NS (2007) The burning issue. Science 316:376.CrossRefGoogle Scholar
  148. Lynch DL (2004) What do forest fires really cost? J For 102:42–49.Google Scholar
  149. Marlon J, Bartlein P, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice CI (2008) Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 1:697–701.CrossRefGoogle Scholar
  150. Marlon J, Bartlein P, Walsh MK, Harrison SP, Brown KJ, Edwards ME, Higuera PE, Power MJ, Anderson RS, Briles CE, et al. (2009) Wildfire responses to abrupt climate change in North America. Proc Natl Acad Sci 106:2519–2524.CrossRefGoogle Scholar
  151. Marynowski L, Simoneit BRT (2009) Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. Palaios 24:784–798.CrossRefGoogle Scholar
  152. Mazhitova GG (2000) Pyrogenic dynamics of permafrost-affected soils in the Kolyma upland. Eurasian Soil Sci 33:542–551.Google Scholar
  153. McGlone MS, Wilmshurst JM (1999) Holocene record of climate, vegetation change and peat bog development, east Otago, New Zealand.Google Scholar
  154. McWethy D, Whitlock C, Wilmshurst JM, McGlone MS, Li X (2009) Rapid deforestation of South Island, New Zealand by early Polynesian fires. Holocene 19:883–897.CrossRefGoogle Scholar
  155. Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253.CrossRefGoogle Scholar
  156. Miller GH, Magee JW, Johnson BJ, Fogel ML, Spooner NA, McCulloch MT, Ayliffe LK (1999) Pleistocene extinction of Genyornis newtoni: Human impact on Australian megafauna. Science 283:205–208.CrossRefGoogle Scholar
  157. Mitchell SR, Harmon ME, O’Connell KEB (2009) Forest fuel reduction alters fire severity and long-term carbon storage in three Pacific Northwest ecosystems. Ecol Appl 19:643–655.CrossRefGoogle Scholar
  158. Moritz MA, Stephens SL (2008) Fire and sustainability: Considerations for California’s altered future climate. Clim Change 87:S265–S271.CrossRefGoogle Scholar
  159. Morton DC, DeFries RS, Randerson JT, Giglio L, Schroeder W, Werf GRvd (2008) Agricultural intensification increases deforestation fire activity in Amazonia. Glob Chang Biol 14:2262–2275.CrossRefGoogle Scholar
  160. Mota BW, Pereira JMC, Oom D, Vasconcelos MJP, Schultz M (2006) Screening the ESA ATSR-2 World Fire Atlas (1997–2002). Atmos Chem Phys 6:1409–1424.CrossRefGoogle Scholar
  161. Mouillot F, Field CB (2005) Fire history and the global carbon budget: A 1° × 1° fire history reconstruction for the 20th century. Glob Chang Biol 11:398–420.CrossRefGoogle Scholar
  162. Mutch RW (1970) Wildland fires and ecosystems – A hypothesis. Ecology 51:1046–1051.CrossRefGoogle Scholar
  163. Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci USA 98:14784–14789.CrossRefGoogle Scholar
  164. Naik V, Mauzerall DL, Horowitz LW, Schwarzkopf MD, Ramaswamy V, Oppenheimer M (2007) On the sensitivity of radiative forcing from biomass burning aerosols and ozone to emission location. Geophys Res Lett 34:1–5.CrossRefGoogle Scholar
  165. Narayan C, Fernandes P, van Brusselen J, Schuck A (2007) Potential for CO2 emissions mitigation in Europe through prescribed burning in the context of the Kyoto Protocol. For Ecol Manage 251:164–173.CrossRefGoogle Scholar
  166. Nepstad D, Lefebvre P, Da Silva UL, Tomasella J, Schlesinger P, Solórzano L, Moutinho P, Ray D, Benito JG (2004) Amazon drought and its implications for forest flammability and tree growth: A basin-wide analysis. Glob Chang Biol 704–717.Google Scholar
  167. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25.CrossRefGoogle Scholar
  168. Ohlson M, Tryterud E (2000) Interpretation of the charcoal record in forest soils: Forest fires and their production and deposition of macroscopic charcoal. Holocene 10:519–525.CrossRefGoogle Scholar
  169. Page SE, Siegert F, Rieley JO, Boehm H-DV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65.CrossRefGoogle Scholar
  170. Parisien M-A, Moritz MA (2009) Environmental controls on the distribution of wildfire at multiple spatial scales. Ecol Monogr 79:127–154.CrossRefGoogle Scholar
  171. Paula, S, Arianoutsou, M, Kazanis, D, Tavsanoglu, C, Lloret, F, Buhk, C, Ojeda, F, Luna, B, Moreno, JM, Rodrigo, A, Espelta, JM, Palacio, S, Fernández-Santos, B, Fernandes, PM (2009) Fire-related traits for plant species of the Mediterranean basin. Ecology 90:1420–1420.Google Scholar
  172. Pausas JG, Bradstock RA, Keith DA, Keeley JE (2004) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100.CrossRefGoogle Scholar
  173. Pausas JG, Keeley JE (2009) A burning story: The role of fire in the history of life. BioScience 59:593–601.CrossRefGoogle Scholar
  174. Pechony O, Shindell DT (2009) Fire parameterization on a global scale. J Geophys Res 114:1–10.CrossRefGoogle Scholar
  175. Pfister G, Hess PG, Emmons LK, Lamarque J-F, Wiedinmyer C, Edwards DP, Pétron G, Gille JC, Sachese GW (2005) Quantifying CO emissions from the 2004 Alaskan wildfires using MOPITT CO data. Geophys Res Lett 32. doi: 10.1029/2005GL022995.Google Scholar
  176. Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–357.CrossRefGoogle Scholar
  177. Pitman AJ, Hesse P (2007) The significance of large scale land cover change on the Australian palaeomonsoon. Quat Sci Rev 26:189–200.CrossRefGoogle Scholar
  178. Power MJ, Whitlock C, Bartlein PJ, Stevens LR (2006) Fire and vegetation history during the last 3800 years in northwestern Montana. Geomorphology 75:420–436.CrossRefGoogle Scholar
  179. Power MJ, Marlon J, Ortiz N, Bartlein PJ, Harrison SP, Mayle FE, Ballouche A, Bradshaw RHW, Carcaillet C, Cordova C, et al. (2008) Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Clim Dyn 30:887–907.CrossRefGoogle Scholar
  180. Power MJ, Marlon JR, Bartlein PJ, Harrison SP (2010) Fire history and the Global Charcoal Database: A new tool for hypothesis testing and data exploration. Palaeogeogr Palaeoclimatol Palaeoecol 291:52–59.Google Scholar
  181. Pyne SJ (1995) World Fire: The Culture of Fire on Earth (384 pp). Seattle, WA: University of Washington Press.Google Scholar
  182. Pyne SJ, Andrews PL, Laven RD (1996) Introduction to Wildland Fire (769 pp). New York, NY: Wiley.Google Scholar
  183. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227.CrossRefGoogle Scholar
  184. Randerson JR, Thompson MV, Conway TJ, Fung I, Field CB (1997) The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Glob Biogeochem Cycles 11:535–560.CrossRefGoogle Scholar
  185. Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS (2006) The impact of boreal forest fire on climate warming. Science 314:1130–1132.CrossRefGoogle Scholar
  186. Randerson JT, Van der Werf GR, Giglio L, Collatz GJ, Kasibhatla PS (2007). Global Fire Emissions Database, Version 2 (GFEDv2.1). Available on-line [http://daac.ornl.gov/ from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. doi: 10.3334/ORNLDAAC/849.
  187. Rasker R (2009) Cost of fighting fires on public lands (p. 4). Bozeman, MT: Headwaters Economics.Google Scholar
  188. Riaño D, Ruiz J, Isidoro D, Ustin S (2007) Global spatial patterns and temporal trends of burned area between 1981 and 2000 using NOAA-NASA Pathfinder. Glob Chang Biol 13:40–50.CrossRefGoogle Scholar
  189. Rinsland CP, Luo M, Logan JA, Beer R, Worden HM, Worden JR, Bowman K, Kulawik SS, Rider D, Osterman G, Gunson M, Goldman A, Shephard M, Clough SA, Rodgers C, Lampel M, Chiou L (2006) Measurements of carbon monoxide (CO) distributions by the tropospheric emission spectrometer instrument onboard the Aura spacecraft: Overview of analysis approach and examples of initial results. Geophys Res Lett 33. doi: 10.1029/2006GL027000.Google Scholar
  190. Roy DP, Boschetti L, Justice CO, Ju J (2008) The Collection 5 MODIS Burned Area Product – Global Evaluation by Comparison with the MODIS Active Fire Product. Remote Sensing Environ 112:3690–3707.CrossRefGoogle Scholar
  191. Running SW (2006) Is global warming causing more, larger wildfires? Science 313:927–928.CrossRefGoogle Scholar
  192. Russell-Smith J, Yates C, Whitehead P, Smith R, Craig R, Allan G, Thackway R, Frakes I, Cridland S, Meyer M (2007) Bushfires ‘down under’: Patterns and implications of contemporary Australian landscape burning. Int J Wildland Fire 16:361–377.CrossRefGoogle Scholar
  193. Schafer JS, Eck TF, Holben BN, Artaxo P, Yamasoe MA, Procopio AS (2002) Observed reductions of total solar irradiance by biomass-burning aerosols in the Brazilian Amazon and Zambian Savanna. Geophys Res Lett 29. doi: 10.1029/2001GL014309.Google Scholar
  194. Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annu Rev Ecol Syst 28:517–544.CrossRefGoogle Scholar
  195. Scholze M, Knorr W, Arnell NW, Prentice IC (2006) A climate-change risk analysis for world ecosystems. Proc Natl Acad Sci USA 103:13116–13120.CrossRefGoogle Scholar
  196. Schultz MG, Heil A, Hoelzemann JJ, Spessa A, Thonicke K, Goldammer JG, Held AC, Pereira JMC, van het Bolscher M (2008) Global wildland fire emissions from 1960 to 2000. Glob Biogeochem Cycles 22:1–17.CrossRefGoogle Scholar
  197. Schwilk DW, Ackerly DD (2001) Flammability and serotiny as strategies: Correlated evolution in pines. Oikos 94:326–336.CrossRefGoogle Scholar
  198. Schwilk DW, Kerr B (2002) Genetic niche hiking: An alternative explanation for the evolution of flammability. Oikos 99:431–442.CrossRefGoogle Scholar
  199. Scott AC (2000) The Pre-Quaternary history of fire. Palaeogeogr Palaeoclimatol Palaeoecol 164:281–329.CrossRefGoogle Scholar
  200. Scott AC, Glasspool IJ (2006) The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc Natl Acad Sci USA 103:10861–10865.CrossRefGoogle Scholar
  201. Sherwood S (2002) A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture. Science 295:1272–1275.CrossRefGoogle Scholar
  202. Shindell D, Faluvegi G (2009) Climate response to regional radiative forcing during the twentieth century. Nat Geosci 2:294–300.CrossRefGoogle Scholar
  203. Shlisky A, Waugh J, Gonzalez P, Gonzalez M, Manta M, Santoso H, Alvarado E, Nuruddin AA, Rodríguez-Trejo DA, Swaty R, Schmidt D, Kaufmann M, Myers R, Alencar A, Kearns F, Johnson D, Smith J, Zollner D (2007). Fire, ecosystems and people: Threats and strategies for global biodiversity conservation. In The Nature Conservance Global Fire Initiative (p. 17). The Nature Conservancy Global Fire Initiative Technical Report 2007-2, Boulder, CO.Google Scholar
  204. Shuman B, Webb III T, Bartlein PJ, Williams JW (2002) The anatomy of a climatic oscillation: Vegetation change in eastern North America during the Younger Dryas chronozone. Quat Sci Rev 21:1777–1791.CrossRefGoogle Scholar
  205. Silva JMN, Pereira JMC, Cabral AI, Sá ACL, Vasconcelos MJP, Mota B, Grégoire J-M (2003) An estimate of the area burned in southern Africa during the 2000 dry season using SPOT-VEGETATION satellite data. J Geophys Res 108. doi: 10.1029/2002JD002320.Google Scholar
  206. Skroch M, Swetnam TW (2008) Public Should Accept More Frequent, but Less Destructive, Forest Fires. Tucson, AZ: Arizona Daily Star.Google Scholar
  207. Smith AMS, Wooster MJ (2005) Remote classification of head and backfire types from MODIS fire radiative power observations. Int J Wildland Fire 14:249–254.CrossRefGoogle Scholar
  208. Stephenson N (1998) Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales. J Biogeogr 25:855–870.Google Scholar
  209. Stevenson J, Hope G (2005) A comparison of late Quaternary forest changes in New Caledonia and northeastern Australia. Quat Res 64:372–383.CrossRefGoogle Scholar
  210. Stocks BJM, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD, Flannigan MD, Hirsch KG, Logan KA, Martell DL, Skinner WR (2002) Large forest fires in Canada, 1959–1997. J Geophys Res Atmos. doi: 10.1029/2001JD000484, 2003Google Scholar
  211. Sukhinin AI, French NHF, Kasischke ES, Hewson JH, Soja AJ, Csiszar IA, Hyer EJ, Loboda T, Conrad SG, Romasko VI, Pavlichenko EA, Miskiv SI, Slinkina OA (2004) AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies. Remote Sensing Environ 93:546– 564.CrossRefGoogle Scholar
  212. Swetnam TW (1993) Fire history and climate change in giant sequoia groves. Science 262:885–889.CrossRefGoogle Scholar
  213. Syphard AD, Radeloff VC, Hawbaker TJ, Stewart SI (2009) Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems. Conserv Biol 23:758–769.CrossRefGoogle Scholar
  214. Tacconi L (2003). Fires in Indonesia: Causes, Costs and Policy Implications. Occasional Paper No. 38. Jakarta, Indonesia: Center for International Forestry Research.Google Scholar
  215. Tansey K, Grégoire J-M, Defourny P, Leigh R, Pekel J-F, van Bogaert E, Bartholomé E (2008) A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution. Geophys Res Lett 35. doi: 10.1029/2007GL031567.Google Scholar
  216. Thonicke K, Venevsky S, Sitch S, Cramer W (2001) The role of fire disturbance for global vegetation dynamics: Coupling fire into a dynamic global vegetation model. Glob Ecol Biogeogr 10:661–677.CrossRefGoogle Scholar
  217. Thonicke K, Prentice IC, Hewitt C (2005) Modeling glacial-interglacial changes in global fire regimes and trace gas emissions. Glob Biogeochem Cycles 19. doi: 10.1029/2004GB002278.Google Scholar
  218. Tilman D, Lehman C (2001) Human-caused environmental change: Impacts on plant diversity and evolution. Proc Natl Acad Sci 98:5433–5440.CrossRefGoogle Scholar
  219. Tolonen K (1986) Charred particle analysis. In BE Berglund (Ed), Handbook of Holocene Palaeoecology and Palaeohydrology (pp. 485–490). New York, NY: Wiley.Google Scholar
  220. Tomich TP, Thomas DE, van Noordwijk M (2004) Environmental services and land use change in Southeast Asia: From recognition to regulation or reward? Agric Ecosyst Environ 104:229–244.CrossRefGoogle Scholar
  221. USDA (2006) Audit Report: Forest Service Large Fire Suppression Costs (p. 48). United States Department of Agriculture.Google Scholar
  222. van der Werf GR, Randerson JT, Collatz GJ, Giglio L, Kasibhatla PS, Avelino A, Olsen SC, Kasischke ES (2004) Continental-scale partitioning of fire emissions during the 1997–2001 El Nino/La Nina period. Science 303:73–76.CrossRefGoogle Scholar
  223. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS (2006) Interannual variability in global biomass burning emission from 1997 to 2004. Atmos Chem Phys 6:3423–3441.CrossRefGoogle Scholar
  224. van der Werf GR, Dempewolf J, Trigg SN, Randerson JT, Kasibhatla PS, Giglio L, Murdiyarso D, Peters W, Morton DC, Collatz GJ, Dolman AJ, DeFries RS (2008a) Climate regulation of fire emissions and deforestation in equatorial Asia. Proc Natl Acad Sci USA 105:20350–20355.CrossRefGoogle Scholar
  225. van der Werf GR, Randerson JT, Giglio L, Gobron N, Dolman AJ (2008b) Climate controls on the variability of fires in the tropics and subtropics. Glob Biogeochem Cycles 22. doi: 10.1029/2007GB003122, 2008Google Scholar
  226. van Wagtendonk JW (2007) The history and evolution of wildland fire use. Fire Ecol Spec Issue 3:3–17.CrossRefGoogle Scholar
  227. Veblen TT, Kitzberger T, Villalba R, Donnegan J (1999) Fire history in northern Patagonia: The roles of humans and climatic variation. Ecol Monogr 69:47–67.CrossRefGoogle Scholar
  228. Venevsky S, Thonicke K, Sitch S, Cramer W (2002) Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study. Glob Chang Biol 8:984–998.CrossRefGoogle Scholar
  229. Walsh MK, Whitlock C, Bartlein PJ (2008) A 14,300-year-long record of fire-vegetation-climate linkages at Battle Ground Lake, southwestern Washington. Quaternary Research 70:251–264.CrossRefGoogle Scholar
  230. Westerling AL, Gershunov A, Brown TJ, Cayan DR, Dettinger MD (2003) Climate and wildfire in the western United States. Bull Am Meteor Soc 84:595–604.CrossRefGoogle Scholar
  231. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western US forest wildfire activity. Science 313:940–943.CrossRefGoogle Scholar
  232. Whelan RJ (1995) The Ecology of Fire (346 pp). Cambridge, NY: Cambridge University Press.Google Scholar
  233. Wiedinmyer C, Neff J (2007) Estimates of CO2 from fires in the United States: Implications for carbon management. Carbon Balance Manag 2. doi: 10.1186/1750–0680–1182–1110.Google Scholar
  234. Williams R, Griffiths A, Allan G (2002) Fire regimes and biodiversity in the wet-dry tropical savanna landscapes of northern Australia. In R Bradstock, J Williams, A Gill (Eds), Flammable Australia: Fire Regimes and Biodiversity of a Continent (pp. 281–304). Cambridge: Cambridge University Press.Google Scholar
  235. Williams R, Hutley L, Cook G, Russell-Smith J, Edwards A, Chen X (2004) Assessing the carbon sequestration potential of mesic savannas in the Northern Territory, Australia: Approaches, uncertainties and potential impacts of fire. Funct Plant Biol 31:415–422.CrossRefGoogle Scholar
  236. Williams J, Shuman B, Bartlein P (2008) Rapid responses of the prairie-forest ecotone to early Holocene aridity in mid-continental North America. Glob Planet Change 66:195–207.CrossRefGoogle Scholar
  237. Wilson JB, King WM (1995) Human-mediated vegetation switches as processes in landscape ecology. Landsc Ecol 10:191–196.CrossRefGoogle Scholar
  238. Winkler H, Formenti P, Esterhuyse D, Swap RJ, Helas G, Annegarn H, Andreae M (2008) Evidence for large-scale transport of biomass burning aerosols from sunphotometry at a remote South African site. Atmos Environ 42:5569–5578.CrossRefGoogle Scholar
  239. Zoltai S (1993) Cyclic development of permafrost in the peatlands of northwestern Alberta, Canada. Arct Alp Res 25:240–246.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Biological SciencesMacquarie UniversityNorth RydeAustralia
  2. 2.Department of GeographyUniversity of OregonEugeneUSA

Personalised recommendations