Dynamics and Planet Formation in/Around Binaries

Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 366)

Abstract

The extent to which planetesimal accretion is affected by the perturbing presence of a companion star is an important issue in the formation of planets in and around binary systems. In this chapter, we review this issue by concentrating on one crucial parameter: the distribution of encounter velocities within the planetesimal swarm. The evolution of this parameter is numerically explored accounting for the secular perturbations of the binary and the friction due to the very likely presence of gas in the disk. Maps of the average encounter velocity ⟨Δv⟩ between different size planetesimals are presented for a total of 120 stellar dynamical configurations obtained by different combinations of the binary semimajor axis a b and eccentricity e b . According to the different values of ⟨Δv⟩, 3 different planetesimal accumulation modes are identified: 1) in regions where ⟨Δv⟩ is comparable to that derived for planetesimal swarms around single-stars, “standard” accretion is likely, eventually via runaway growth, 2) in regions where ⟨Δv⟩ is larger than v ero , the threshold velocity above which all impacts are eroding, no accretion is possible and planet growth is stopped, 3) in between these two extremes, there is a large fraction of binary configurations where the increase in ⟨Δv⟩ is still below the erosion threshold. Planetesimal accumulation can still occur but it possibly proceeds at a slower rate than in the single-star case, following the so-called type II runaway growth mode.

Keywords

Semimajor Axis Giant Planet Terrestrial Planet Protoplanetary Disk Companion Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acnowledgments

S. Kortenkamp acknowledges support from NASA for some of this work under grants NNG04GP56G and NNG04GI14G.

References

  1. Adachi, I., Hayashi, C., Nakagawa, K., 1976, The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula, Prog. Theor. Phys., 56, 1756ADSCrossRefGoogle Scholar
  2. Alibert, Y., Mordasini, C., Benz, W., 2004, Migration and giant planet formation, A&A, 417, L25–L28ADSCrossRefGoogle Scholar
  3. Artymowicz, P., Lubow, S. H., 1994, Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes, ApJ, 421, 651Google Scholar
  4. Barge, P., Pellat, R., 1993, Mass spectrum and velocity dispersions during planetesimal accumulation, Icarus, 104, 79ADSCrossRefGoogle Scholar
  5. Benz, W., Asphaug, E., 1999, Catastrophic disruptions revisited, Icarus, 142, 5ADSCrossRefGoogle Scholar
  6. Bodenheimer, P., Lin, D. N. C., 2002, Implications of extrasolar planets for understanding planet formation, Annual Review of Earth and Planetary Sciences, 30, 113–148ADSCrossRefGoogle Scholar
  7. Boss, A. P., 1997, Giant planet formation by gravitational instability, Science, 276, 1836–1839ADSCrossRefGoogle Scholar
  8. Boss, A. P., 2007, Testing disk instability models for giant planet formation, ApJ, 661, L73–L76ADSCrossRefGoogle Scholar
  9. Boss, A. P., 2004, Convective cooling of protoplanetary disks and rapid giant planet formation, ApJ, 610, 456–463ADSCrossRefGoogle Scholar
  10. Boss, A. P., 2006, Gas giant protoplanets formed by disk instability in binary star systems, ApJ, 641, 1148–1161ADSCrossRefGoogle Scholar
  11. Chambers, J. E., Wetherill, G. W., 1998, Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions, Icarus, 136, 304–327ADSCrossRefGoogle Scholar
  12. Chambers J.E., Wetherill G.W., Boss A.P., 1996, The stability of multi-planet systems, Icarus, 119, 261ADSCrossRefGoogle Scholar
  13. Chen, C. H., Kamp, I., 2004, ApJ, 602, 985–992ADSCrossRefGoogle Scholar
  14. Cuzzi, J., Weidenschilling, S., Particle-gas dynamics and primary accretion, 2006, in Meteorites and the Early Solar System II, D. S. Lauretta and H. Y. McSween Jr. (eds.), University of Arizona Press, Tucson, 943 pp., p. 353–381Google Scholar
  15. Desidera, S., Barbieri, M., 2007, A&A, 462, 345–353ADSCrossRefGoogle Scholar
  16. Dominik, C., Tielens, A., The physics of dust coagulation and the structure of dust aggregates in space, 1997, ApJ, 480, 647Google Scholar
  17. Dullemond, C., Dominik, C., Dust coagulation in protoplanetary disks: A rapid depletion of small grains, 2005, A&A, 434, 971Google Scholar
  18. Duquennoy, A., Mayor, M., 1991, Multiplicity among solar-type stars in the solar neighborhood. II-Distribution of the orbital elements in an unbiased sample, A&A, 248, 485Google Scholar
  19. Eggenberger, A., Udry, S., Mayor, M., 2003, in ASP Conf. Ser. 294, Scientific Frontiers in Research on Extrasolar Planets, ed. D. Denning & S. Seager, 43Google Scholar
  20. Goldreich, P., Ward, W., 1973, The formation of planetesimals, ApJ, 183, 1051ADSCrossRefGoogle Scholar
  21. Greenberg, R., Hartmann, W. K., Chapman, C. R., Wacker, J. F., 1978, Planetesimals to planets – Numerical simulation of collisional evolution, Icarus, 35, 1ADSCrossRefGoogle Scholar
  22. Guillot, T., 1999, A comparison of the interiors of Jupiter and Saturn, Planetary and Space Science, 47, 1183–1200ADSCrossRefGoogle Scholar
  23. Guillot, T., 2004, The interiors of giant planets: Models and Outstanding Questions, Annual Review of Earth and Planetary Sciences, 33, 493–530ADSCrossRefGoogle Scholar
  24. Haisch, K. E., Lada, E. A., Lada, C. J., 2001, ApJ, 553, L153–L156ADSCrossRefGoogle Scholar
  25. Hale, A., 1994, AJ, 107, 306ADSCrossRefGoogle Scholar
  26. Hatzes, A. P., Cochran, W. D., Endl, M., McArthur, B., Paulson, D. B., Walker, G. A. H., Campbell, B., Yang, S., 2003, A planetary companion to gamma Cephei A, ApJ, 599, 1383–1394ADSCrossRefGoogle Scholar
  27. Hayashi, C., 1981, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula, PthPS, 70, 35ADSGoogle Scholar
  28. Heppenheimer, T., 1978, On the formation of planets in binary star systems, A&A, 65, 421ADSGoogle Scholar
  29. Holman, M. J., Wiegert, P. A., 1999, Long-term stability of planets in binary systems, AJ, 117, 621–628ADSCrossRefGoogle Scholar
  30. Holsapple, K. A., 1994, Catastrophic disruptions and cratering of solar system bodies: A review and new results, P&SS, 42, 1067ADSCrossRefGoogle Scholar
  31. Johansen, A., Oishi, J. S., Low, M. M., Klahr, H., Henning, T., Youdin, A., 2007, Rapid planetesimal formation in turbulent circumstellar disks, Nature, 448, 1022–1025ADSCrossRefGoogle Scholar
  32. Johansen, A., Youdin, A., 2007, Protoplanetary disk turbulence driven by the streaming instability: Nonlinear saturation and particle concentration, ApJ, 662, 627–641ADSCrossRefGoogle Scholar
  33. Johansen, A., Klahr, H., Henning, T., 2006, Gravoturbulent formation of planetesimals, ApJ, 636, 1121–1134ADSCrossRefGoogle Scholar
  34. Kary, D. M., Lissauer, J. J., Greenzweig, Y., 1993, Nebular gas drag and planetary accretion, Icarus, 106, 288–307ADSCrossRefGoogle Scholar
  35. Kokubo, E., Ida, S., 1998, Oligarchic growth of protoplanets, Icarus, 131, 171ADSCrossRefGoogle Scholar
  36. Kokubo, E., Ida, S., 2000, Formation of protoplanets from planetesimals in the solar nebula, Icarus, 143, 15ADSCrossRefGoogle Scholar
  37. Kortenkamp S. J., Wetherill G. W., 2000a, Terrestrial planet and asteroid formation in the presence of giant planets I. Relative velocities of planetesimals subject to Jupiter and Saturn perturbations, Icarus, 143, 60Google Scholar
  38. Kortenkamp S. J., Wetherill G. W., 2000b, Formation of the asteroid belt, Lunar Plan. Sci. Conf., 31, abstract #1813Google Scholar
  39. Kortenkamp S. J., Kokubo E., Weidenschilling S.J., 2000, Formation of planetary embryos, in Origin of the Earth and Moon, R. M. Canup and K. Righter (eds.), University of Arizona Press, Tucson, pp. 85–100Google Scholar
  40. Kortenkamp, S., Wetherill, G., Inaba, S., 2001, Runaway growth of planetary embryos facilitated by massive bodies in a protoplanetary disk, Science, 293, 1127ADSCrossRefGoogle Scholar
  41. Kortenkamp S. J., Weidenschilling S. J., Marzari F., 2006, A new code for modeling planetesimal accretion in protoplanetary disks perturbed by massive companions 38th DPS Meeting, Pasadena, CA, abstract #63.03Google Scholar
  42. Lagrange, A.-M., Beust, H., Udry, S., Chauvin, G., Mayor, M., 2006, New constrains on Gliese 86 B - VLT near infrared coronographic imaging survey of planetary hosts, A&A, 459, 955ADSCrossRefGoogle Scholar
  43. Lissauer, J.J., 1993, Planet formation, ARA&A, 31, 129ADSCrossRefGoogle Scholar
  44. Lissauer J., Stewart G., 1993, Growth of planets from planetesimals, in Protostars and Planets III, the Univ. of Arizona Press, Tucson, 1061Google Scholar
  45. Marzari, F., Davis, D., Vanzani, V., 1995, Collisional evolution of asteroid families, Icarus, 113, 168ADSCrossRefGoogle Scholar
  46. Marzari F., Scholl H., 1998, Capture of Trojans by a growing proto-jupiter, Icarus, 131, 41ADSCrossRefGoogle Scholar
  47. Marzari F., Scholl H., 2000, Planetesimal accretion in binary star systems, ApJ, 543, 328ADSCrossRefGoogle Scholar
  48. Marzari, F., Barbieri, M., 2007a, A&A, 467, 347ADSCrossRefGoogle Scholar
  49. Marzari, F., Barbieri, M., 2007b, A&A, 472, 643ADSCrossRefGoogle Scholar
  50. Marzari, F., Thébault, P., Scholl, H., 2009, A&A, 507, 505ADSCrossRefGoogle Scholar
  51. Mayer L., Quinn T., Wadsley J., Stadel J., 2002, Formation of giant planets by fragmentation of protoplanetary disks, Science, 298, 1756ADSCrossRefGoogle Scholar
  52. Mugrauer, M., Neuhauser, R., 2005, Gl 86B: A white dwarf orbits an exoplanet host star, MNRAS, 361, L15ADSGoogle Scholar
  53. Nelson, A., 2000, Planet formation is unlikely in equal-mass binary systems with a ≃ 50 AU, ApJ, 537, 65ADSCrossRefGoogle Scholar
  54. Neuhäuser, R., Mugrauer, M., Fukagawa, M., Torres G., Schmidt, T., 2007, Direct detection of exoplanet host star companion gamma Cep B and revised masses for both stars and the sub-stellar object, A&A, 462, 777ADSCrossRefGoogle Scholar
  55. Öpik E. J., 1951, Collision probabilities with the planets and the distribution of interplanetary matter, Proc. Irish Acad., 54, 165MATHGoogle Scholar
  56. Papaloizou, J., Lin, D. N. C., 1984, On the tidal interaction between protoplanets and the primordial solar nebula. I – Linear calculation of the role of angular momentum exchange, ApJ, 285, 818–834Google Scholar
  57. Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., Greenzweig, Y., 1996, Formation of the giant planets by concurrent accretion of solids and gas, Icarus, 124, 62–85ADSCrossRefGoogle Scholar
  58. Pourbaix, D., Neuforge-Verheecke, C., Noels, A., 1999, Revised masses of alpha Centauri, A&A, 344, 172–176ADSGoogle Scholar
  59. Rafikov, R., 2003, The growth of planetary embryos: Orderly, runaway, or oligarchic?, AJ, 125, 942ADSCrossRefGoogle Scholar
  60. Rafikov, R., 2004, Fast Accretion of Small Planetesimals by Protoplanetary Cores, AJ, 128, 1348ADSCrossRefGoogle Scholar
  61. Raghavan, D., Henry, T. J., Mason, B. D., Subasavage, J. P., Jao, W.-C., Beaulieu, T. D., Hambly, N.C., 2006, Two suns in the sky: Stellar multiplicity in exoplanet systems, ApJ, 646, 523ADSCrossRefGoogle Scholar
  62. Rice, W. K. M., Armitage, P. J., 2003, On the formation timescale and core masses of gas giant planets, ApJ, 598, L55–L58ADSCrossRefGoogle Scholar
  63. Safronov, V. S., 1969, Evolution of the protoplanetary cloud and formation of the earth and the planets. Israel program for scientific translation, TT-F 677Google Scholar
  64. Santos, N. C., Israelian, G., Mayor, M., 2004, Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation, A&A, 415, 1153–1166Google Scholar
  65. Sato, B., Fischer, D. A., Henry, G. W., Laughlin, G., Butler, R. P., Marcy, G. W., Vogt, S. S., Bodenheimer, P., Ida, S., Toyota, E., Wolf, A., Valenti, J. A., Boyd, L. J., Johnson, J. A., Wright, J. T., Ammons, M., Robinson, S., Strader, J., McCarthy, C., Tah, K. L., Minniti, D., 2005, The N2K consortium. II. A transiting hot saturn around HD 149026 with a large dense core, ApJ, 633, 465–473Google Scholar
  66. Savonije, G. J., Papaloizou, J. C. B., Lin, D., 1994, On tidally induced shocks in accretion disks in close binary systems, MNRAS, 268, 13ADSGoogle Scholar
  67. Stewart G. R., Kaula W. M., 1980, Gravitational kinetic theory for planetesimals, Icarus, 44, 154ADSCrossRefGoogle Scholar
  68. Strom, S. E., Edwards, S., Skrutskie, M. F., Evolutionary time scales for circumstellar disks associated with intermediate- and solar-type stars. In Protostars and Planets III, University of Arizona Press, Tucson, pp. 837–866Google Scholar
  69. Thébault, P., Marzari, F., Scholl, H., 2002, Terrestrial planet formation in exoplanetary systems with a giant planet on an external orbit, A&A, 384, 594ADSCrossRefGoogle Scholar
  70. Thébault, P., Brahic, A., 1998, Dynamical influence of a proto-Jupiter on a disc of colliding planetesimals, P&SS, 47, 233ADSCrossRefGoogle Scholar
  71. Thébault, P., Beust, H., 2001, Falling evaporating bodies in the 0̆3b2 Pictoris system. Resonance refilling and long term duration of the phenomenon, A&A, 376, 621Google Scholar
  72. Thébault P., Augereau, J.-C., Beust, H., 2003, Dust production from collisions in extrasolar planetary systems. The inner beta Pictoris disc, A&A, 408, 775Google Scholar
  73. Thébault, P., Marzari, F., Scholl, H., Turrini, D., Barbieri, M., 2004, Planetary formation in the γ Cephei system, A&A, 427, 1097ADSCrossRefGoogle Scholar
  74. Thébault, P., Marzari, F., Scholl, H., 2006, Relative velocities among accreting planetesimals in binary systems: The circumprimary case, Icarus, 183, 193ADSCrossRefGoogle Scholar
  75. Thebault, P., Marzari, F., Scholl, H., 2008, MNRAS, 388, 1528ADSCrossRefGoogle Scholar
  76. Thebault, P., Marzari, F., Scholl, H., 2009, MNRAS, 393, L21–L25ADSCrossRefGoogle Scholar
  77. Torres, G., 2007, The planet host star γ Cephei: Physical properties, the binary orbit, and the mass of the substellar companion, ApJ, 654, 1095ADSCrossRefGoogle Scholar
  78. Weidenschilling, S., 1977, The distribution of mass in the planetary system and solar nebula, Astrophysics and Space Science, 51, 153–158ADSCrossRefGoogle Scholar
  79. Weidenschilling, S., 1980, Dust to planetesimals – Settling and coagulation in the solar nebula, Icarus, 44, 172ADSCrossRefGoogle Scholar
  80. Weidenschilling, S. J., 2000, Formation of planetesimals and accretion of the terrestrial planets, SSRv, 92, 295ADSGoogle Scholar
  81. Weidenschilling, S. J., Davis, D. R., 1985, Orbital resonances in the solar nebula – Implications for planetary accretion, Icarus, 62, 16ADSCrossRefGoogle Scholar
  82. Weidenschilling S. J., Spaute D., Davis D. R., Marzari F., Ohtsuki K., 1997, Accretional evolution of a planetesimal swarm II: The terrestrial zone, Icarus, 128, 429ADSCrossRefGoogle Scholar
  83. Spaute, D., Weidenschilling, S. J., Davis, D. R., Marzari, F., 1991, Accretional evolution of a planetesimal swarm. I - A new simulation, Icarus, 92, 147–164CrossRefGoogle Scholar
  84. Wetherill, G. W., Stewart, G. R., 1989, Accumulation of a swarm of small planetesimals, Icarus, 77, 330ADSCrossRefGoogle Scholar
  85. Wetherill, G. W., Stewart, G. R., 1993, Formation of planetary embryos – Effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination, Icarus, 106, 190ADSCrossRefGoogle Scholar
  86. Wetherill, G. W., Inaba, S., 2000, Planetary accumulation with a continuous supply of planetesimals, SSRv, 92, 311ADSGoogle Scholar
  87. Whitmire, D., Matese, J., Criswell, L., 1998, Habitable planet formation in binary star systems, Icarus, 132, 196ADSCrossRefGoogle Scholar
  88. Wuchterl, G., Guillot, T., Lissauer, J. J., 2000, Giant planet formation, in Protostars and Planets IV, V. Mannings, A. P. Boss, S. S. Russell, (eds.), University of Arizona Press, Tucson, p. 1081Google Scholar
  89. Xie, J.-W., Zhou J.-L., 2008, ApJ, 686, 570ADSCrossRefGoogle Scholar
  90. Youdin, A., Shu, F., 2002, Planetesimal formation by gravitational instability, ApJ, 580, 494ADSCrossRefGoogle Scholar
  91. Youdin, A., Chiang, E., 2004, Particle pileups and planetesimal formation, ApJ, 601, 1109ADSCrossRefGoogle Scholar
  92. Zucker, S., Mazeh, T., Santos, N. C., Udry, S., Mayor, M., 2004, Multi-order TODCOR: Application to observations taken with the CORALIE echelle spectrograph. II. A planet in the system HD 41004, 2004, A&A, 426, 695Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Dipartimento di FisicaPaduvaItaly
  2. 2.Observatoire de ParisSection de MeudonPrincipal CedexFrance
  3. 3.Planetary Science InstituteTucsonUSA
  4. 4.Observatoire de la Côte d’AzurNice, Cedex 4France

Personalised recommendations