Uranium and Thorium: The Extreme Diversity of the Resources of the World’s Energy Minerals

  • Michel Cuney
Part of the International Year of Planet Earth book series (IYPE)


Uranium and thorium represent two elements which can be used for the production of energy. The types of uranium deposits, the mechanisms driving their genesis and their resources are relatively well known because extensive exploration programs and scientific research projects have been developed worldwide since the early 1950s. However, there are still several types of U deposits which have been underexplored such as those related to Na-metasomatism, and several others with low uranium grade but large tonnages such as phosphates, which mining has been discontinued, but which may become significant resources in the future depending of the evolution of the U prices. At the opposite, the types of Th deposits, their genesis and their resources are poorly known because of the extremely limited commercial use of this commodity. Recent evaluations of the Th resources show however that they may be as important as identified U resources, but a better evaluation of the cost of Th extraction for most of these resources is crucially needed. However, as the Th cycle does not need the costly enrichment process required for the use of uranium in most nuclear reactors and that the totality of Th can be burned in a nuclear power station, at least theoretically, the cost of thorium extraction can probably be significantly higher than that of U.

U deposits are extremely diverse and may be formed at nearly all steps of the geological cycle, whereas Th deposits dominantly result from concentration during two major types of processes: magmatic fractionation of peralkaline complexes, associated carbonatites as an incompatible element and associated fluid fractionation from these types of melt, and as heavy mineral accumulation in placer-type deposits, essentially as monazite.

Uranium is already widely used for energy production, but only a very small part of it is burned in the present nuclear reactors. A great variety of nuclear materials are produced during the U nuclear cycle: depleted U, spent fuel, reprocessed U, reprocessed Pu and military highly enriched U and Pu, which can be transformed to usable fuel in the present and future generations of nuclear power stations for a sustainable use of these resources. The present review of available and potentially available nuclear fuel resources in the world shows that these resources are considerable and can be largely increased with increasing exploration, the improvement of processing of low grade – large tonnage deposits (phosphates, black shales) – of refractory ore associated with peralkaline intrusions, the spreading of recycling spent U fuel and the development of new technologies for burning 238U and 232Th in new generations of nuclear power reactors.


Uranium Thorium Deposits Resources Sustainable use 


  1. Adamek PM, Wilson MR (1977) Recognition of a new uranium province from the Precambrian of Sweden. In: Proceedings of a technical commity. IAEA, Vienna, pp 199–215Google Scholar
  2. Adams SS, Cramer RT (1985) Data-process-criteria model for roll-type uranium deposits. In: Geological environments of sandstone-type uranium deposits, IAEA-TECDOC-328. IAEA, Vienna, pp 383–400Google Scholar
  3. Alexandre P, Kyser K, Thomas D, Polito P, Marlat J (2009) Geochronology of unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada and their integration in the evolution of the basin. Miner Deposita 44:41–59CrossRefGoogle Scholar
  4. Alia M (1956) Radioactive deposits and possibilities in Spain. In: Proceedings of the international conference on the peaceful uses of atomic energy, New York, United Nations. Geol Uranium Thorium 6:196–197Google Scholar
  5. Andersson A, Dahlman B, Gee DG, Snäll S (1985) The Scandinavian alum shales. Sveriges Geologiska Undersoekning, Serie Ca: Avhandlingar och Uppsatser I A4, NR 56, 50Google Scholar
  6. Andreoli MAG, Smith CB, Watkeys M, Moore JM, Ashwal LD, Hart RJ (1994) The geology of the Steenkampskraal monazite deposit, South Africa; implications for REE-Th-Cu mineralization in charnockite-granulite terranes. Econ Geol 89:994–1016CrossRefGoogle Scholar
  7. Andrew RL (1990) Cummins range carbonatite. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. Austral Inst Mining Metallurgy, Melbourne, pp 711–713Google Scholar
  8. Annesley IR, Madore C, Hajnal Z (2003) Wollaston-Mudjatik transition zone: its characteristics and influence on the genesis of unconformity-type uranium deposits. In: Cuney M (ed) Uranium geochemistry 2003, conference proceedings, Nancy, pp 55–58Google Scholar
  9. Ashley PM (1984) Sodic granitoids and felsic gneisses associated with uranium-thorium mineralisation, Crockers Well, South Australia. Miner Deposita 19:7–18CrossRefGoogle Scholar
  10. Aubakirov KhB (1998) On the deep origin of ore-forming solutions in the uranium deposits in platform sequence of depressions (with Chu-Sarysu Province as an example). Geol Kazakhstan 354:40–47Google Scholar
  11. Audeoud D (1982) Les minéralisations uranifères et leur environnement à Kamoto, Kambove et Shinkolobwe (Shaba, Zaïre). Pétrographie, géochimie et inclusions fluides. Unpublished PhD thesis, Lyon University (France)Google Scholar
  12. Ballhorn RK, Thakur VK, da Fonte JEC, Suckau V (1981) Geology of the uranium deposit. Brazil. In: Uranium deposits in Latin America – geology and exploration. IAEA Proceedings, ViennaGoogle Scholar
  13. Barnicoat AC, Henderson IHC, Knipe RJ, Yardley BWD, Napier RW, Fox NPC, Kenyon AK, Muntingh DJ, Strydom D, Winkler KS, Lawrence SR, Cornford C (1997) Hydrothermal gold mineralization in the Witwatersrand basin. Nature 386:820–824CrossRefGoogle Scholar
  14. Basson IJ, Greenway G (2004) The rössing uranium deposit: a product of late tectonic localization of uraniferous granites in the central zone of the Damara Orogen, Namibia. J Afr Earth Sci 38:413–435CrossRefGoogle Scholar
  15. Baturin GN, Kochenov AV (2001) Uranium in phosphorites. Lithol Miner Res 36:303–321CrossRefGoogle Scholar
  16. Belevtsev YN, Koval VB (1968) Genesis of uranium deposits associated with sodium metasomatism in crystalline rocks of shields. Geologicheskiy Zhurnal (Kiev) 28:3–17Google Scholar
  17. Berning J, Cooke R, Hiemstra SA, Hoffman U (1976) The Rössing uranium deposit, South West Africa. Econ Geol 71:351–368CrossRefGoogle Scholar
  18. Boitsov VE, Pilipenko GN (1998) Gold and uranium in mesozoic hydrothermal deposits of Central Aldan, Russia. Geol Rudnykh Mestorozhdenii 40:354–369Google Scholar
  19. Boulvais P, Fourcade S, Gruau G, Moine B, Cuney M (1998) Persistence of pre-metamorphic C and O isotopic signatures in marbles subject to Pan-African granulite-facies metamorphism and U–Th mineralization. Tranomaro. Southeast Madagascar. Chem Geol 150:247–262CrossRefGoogle Scholar
  20. Bowden P, Herd D, Kinnaird JA (1995) The significance of uranium and thorium concentrations in pegmatitic leucogranites (alaskites), Rössing mine, Swakopmund, Namibia. Commun Geol Surv Namibia 10:43–49Google Scholar
  21. Bowring SA, Van Schmus WR, Hoffman PF (1984) U-Pb zircon ages from Athapuscow aulacogene, East arm of Great Slave Lake, N.W-T., Canada. Can J Earth Sci 2:1315–1324CrossRefGoogle Scholar
  22. Boyle DR (1982) The formation of basal-type uranium deposits in South Central British Columbia. Econ Geol 77:1176–1209CrossRefGoogle Scholar
  23. Cai C, Li H, Qin M, Luo X, Wang F, Ou G (2007) Biogenic and petroleum-related ore-forming processes in Dongsheng uranium deposit, NW China. Ore Geol Rev 32:262–274CrossRefGoogle Scholar
  24. Carlisle D, Merifield PM, Orme AR, Kohl MS, Kolker O (1978) The distribution of calcretes and gypcretes in southwestern United States and their uranium favorability based on a study of deposits in Western Australia and South West Africa (Namibia), US Department of Energy. Open File Report GJBX-29Google Scholar
  25. Carré JL (1979) Les minéralisations uraniferes des dépôts oligocènes de Saint Pierre du Cantal dans leur cadre géologique régional et local. Unpublished PhD thesis, INPL, Nancy, 121 pGoogle Scholar
  26. Castor SB (2008) The mountain pass rare-earth carbonatite and associated ultrapotassic rocks, California. Can Mineral 46:779–806CrossRefGoogle Scholar
  27. Castor SB, Henry CD (2000) Geology, geochemistry, and origin of volcanic rock-hosted uranium deposits in north-western Nevada and south-eastern Oregon, USA. Ore Geol Rev 16:1–40CrossRefGoogle Scholar
  28. Cathcart JB (1978) Uranium in phosphate rock. U.S. Geological Survey Professional Paper 988AGoogle Scholar
  29. Cathelineau M (1986) The hydrothermal alkali metasomatism effects on granitic rocks: quartz dissolution and related subsolidus changes. J Petrol 27:945–965Google Scholar
  30. Cathelineau M, Boiron MC, Holliger P, Poty B (1990) Metallogenesis of the French part of the Variscan orogen. Part II: Time-space relationships between U, Au and Sn-W ore deposition and geodynamic events – mineralogical and U-Pb data. Tectonophysics 177:59–79CrossRefGoogle Scholar
  31. Chabiron A, Cuney M, Poty B (2003) Possible uranium sources for the largest uranium district associated with volcanism: the Steltsovka caldera (Transbaïkalia, Russia). Miner Deposita 38:127–140Google Scholar
  32. Chao ECT, Back JM, Minkin JA, Ren Y (1992) Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REE-Fe-Nb ore deposit, Inner Mongolia, P.R.C. Appl Geoch 7:443–458CrossRefGoogle Scholar
  33. Chao ECT, Back JM, Minkin JA, Tatsumoto M, Junwen W, Conrad JE, McKee EH, Zonglin H, Qingrun M (1995) The sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of inner Mongolia, China: a cornerstone example for giant polymetallic ore deposits of hydrothermal origin. US Geol Surv Bull 2143, 65 p
  34. Chavès AO, Tubrett M, Rios FJ et al (2007) U-Pb ages related to uranium mineralization of Lagoa Real, Bahia – Brazil: tectonic implications. Rev Geol 20:141–156Google Scholar
  35. Chernyshev IV, Golubev VN (1996) The Strel’tsovskoe deposit, Eastern Transbaikalia: isotope dating of mineralisation in Russia’s largest uranium deposit. Geokhimia 10:924–937 (in Russian)Google Scholar
  36. Cinelu S (2008) Métasomatose sodique et minéralisations uranifères associées: Exemples du batholite du Kurupung (Guyana), du district de Kirovograd – Novoukrainsk (Ukraine) et du gisement d’Espinharas (Brésil). Unpublished PhD thesis, Henri Poincaré – Nancy I UnivGoogle Scholar
  37. Cinelu S, Cuney M (2006) Na-metasomatism and U–Zr mineralization: a model based on the Kurupung batholith (Guyana). Goldschmidt Conference, Melbourne, Australia. Geochim Cosmochim Acta 70:A103Google Scholar
  38. Corfu F, Andrews AJ (1986) A U–Pb age for mineralized Nipissing diabase, Gowganda, Ontario. Can J Earth Sci 23:107–109CrossRefGoogle Scholar
  39. Creaser RA (1996) Petrogenesis of a Mesoproterozoic quartz latite-granitoid suite from the Roxby Downs area, South Australia. Precamb Res 79:371–394CrossRefGoogle Scholar
  40. Cruikshank BI, Ferguson J, Derrick GM (1980) The association of uranium and skarn development in the Mary Kathleen area, Queensland. In: Ferguson J, Goleby AB (eds) Uranium in the Pine Creek geosynclines. IAEA, Vienna, pp 698–706Google Scholar
  41. Cuney M (1978) Geologic environment, mineralogy, and fluid inclusions of the Bois Noirs-Limouzat uranium vein, Forez, France. Econ Geol 73:1567–1610CrossRefGoogle Scholar
  42. Cuney M (1980) Preliminary results on the petrology and fluid inclusions of the Rössing uraniferous alaskites. Trans Geol Soc S Afr 83:39–45Google Scholar
  43. Cuney M (1982) Processus de concentration de l’uranium et du thorium au cours de la fusion partielle et de la cristallisation des magmas granitiques. In: Les méthodes de prospection de l’uranium. OCDE, Paris, pp 277–292Google Scholar
  44. Cuney M (1990) Contrôles magmatiques et structuraux de la métallogenèse uranifère tardi-hercynienne; exemple du district de la Crouzille (Haute-Vienne). Chron Rech Min 499:9–17Google Scholar
  45. Cuney M (2009) The extreme diversity of uranium deposits. Miner Deposita 44:3–9CrossRefGoogle Scholar
  46. Cuney M (2012) Key genetic processes that form uranium deposits throughout the geological cycle: working towards a genetic classification. Econ Geol (in revision)Google Scholar
  47. Cuney M, Kyser K (2008) Recent and not-so-recent developments in uranium deposits and implications for exploration. Mineralogical Association of Canada, short course series 39: Mineralogical Association of Canada, Quebec, 257 pGoogle Scholar
  48. Cuney M, Mathieu R (2000) Extreme light rare earth element mobilization by diagenetic fluids in the geological environment of Oklo natural reactor zones, Franceville basin, Gabon. Geology 28:743–746CrossRefGoogle Scholar
  49. Cuney M, Friedrich M, Blumenfeld P, Bourguignon A, Boiron M-C, Vigneresse JL, Poty B (1990) Metallogenesis in the French part of the Variscan orogen. Part I. U-preconcentrations in the pre-Variscan and Variscan formations – a comparison with Sn, W and Au. Tectonophysics 177:39–57CrossRefGoogle Scholar
  50. Dahlkamp FJ (1993) Uranium ore deposits. Springer, Berlin, 460 pGoogle Scholar
  51. Davidson A (1982) Petrochemistry of the Blachford Lake complex near Yellowknife, Northwest Territories. In: Maurice YT (ed) Uranium in granites. Geological Survey Canada Paper 81:71–80Google Scholar
  52. Derome D, Cuney M, Cathelineau M, Dubessy J, Bruneton P, Hubert A (2003) A detailed fluid inclusion study in silicified breccias from the kombolgie sandstones (northern territory, Australia): application to the genesis of middle-proterozoic unconformity-type uranium deposits. J Geoch Explor 78–79:525–530CrossRefGoogle Scholar
  53. Derome D, Cathelineau M, Cuney M, Fabre C, Lhomme T, Banks DA (2005) Mixing of sodic and calcic brines and uranium deposition at McArthur river, Saskatchewan, Canada: a Raman and laser-induced breakdown spectroscopic study of fluid inclusions. Econ Geol 100:1529–1545Google Scholar
  54. Dubessy J, Ramboz C, Nguyen Trung C, Cathelineau M, Charoy B, Cuney M, Leroy J, Poty B, Weisbrod A (1987) Physical and chemical control (fO2, T, pH) of the opposite behaviour of U and Sn-W as exemplified by hydrothermal deposits in France and Great Britain, and solubility data. Bull Minér 110:262–281Google Scholar
  55. Duncan RK, Willett GC (1990) Mount weld carbonatite. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. Austral Inst Mining Metal, Melbourne, pp 711–713Google Scholar
  56. El Jarray A, Boiron MC, Cathelineau M (1994) Percolation microfissurale de vapeurs aqueuses dans le granite de Pény (Massif de Saint Sylvestre, Massif Central): relation avec la dissolution du quartz. C R Acad Sci Paris 318:1095–1102Google Scholar
  57. Eriksson SC (1984) Age of carbonatite and phoscorite magmatism of the Phalaborwa Complex (South Africa). Chem Geol 46:291–299CrossRefGoogle Scholar
  58. Ermolaeva VN, Pekov IV, Chukanov NV, Zadov AE (2007) Thorium mineralization in the hyperalkaline pegmatites and hydrothermalites of Lovozero pluton, Kola Peninsula. Geol Ore Deposits 49:758–775CrossRefGoogle Scholar
  59. Facer JF (1979) Uranium in coal, Rep. GJBX-56(79). USDOE, Grand Junction Office, ColoradoGoogle Scholar
  60. Fayek M, Kyser K (1997) Characterization of multiple fluid events and rare-earth-element mobility associated with formation of unconformity- type uranium deposits in the Athabasca Basin, Saskatchewan. Can Miner 35:627–658Google Scholar
  61. Finch WI, Davis JF (1985) Sandstone-type uranium deposits. An introduction. In: Geological environments of sandstone-type uranium deposits. IAEA-TECDOC-38. IAEA, Vienna pp 11–20Google Scholar
  62. Fitton JG, Upton BGJ (1987) Alkaline igneous rocks. Geol Soc Lon Spec Publ 30:544Google Scholar
  63. Forbes P (1989) Rôle des structures sédimentaires et tectoniques, du volcanisme alcalin régional et des fluides diagénétiques-hydrothermaux pour le formation des minéralisations à U-Zr-Zn-V-Mo d’Akouta, Niger. Géol GéochimUranium Mém, Nancy 7, 376 pGoogle Scholar
  64. Forbes P, Pacquet A, Chantret F, Oumarou J, Pagel M (1984) Marqueurs du volcanisme dans le gisement d’uranium d’Akouta (République du Niger). C R Acad Sci Paris 298:647–650Google Scholar
  65. Frimmel HE, Minter WEL (2002) Recent developments concerning the geological history and genesis of the Witwatersrand gold deposits, South Africa. Soc Econ Geol Spec Publ 9:17–45Google Scholar
  66. Frimmel HE, Groves DI, Kirk J, Ruiz J, Chesley J, Minter WEL (2005) The formation and preservation of the Witwatersrand goldfields, the largest gold province in the world. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) 100th Anniversary volume, Society of economic geologists 9. Society of Economic Geologists, Littleton, pp 769–797Google Scholar
  67. Fuchs H, Hilger W (1989) Kiggavik (Lone Gull): an unconformity related uranium deposit in the Thelon Basin, Northwest Territories, Canada. Uranium resources and geology of North America. In: Proceedings of a technical committee meeting, Saskatoon, Saskatchewan. IAEA-TECDOC 500. International Atomic Energy Agency, ViennaGoogle Scholar
  68. Gabbard A (1993) Coal combustion: nuclear resource or danger. Oak Ridge Natl Lab Rev 26:25–33Google Scholar
  69. Gabelman JW, Boyer WH (1988) Uranium deposits in Todilto limestone, New Mexico: the Barbara “J” No. 1 mine. Ore Geol Rev 3:241–276CrossRefGoogle Scholar
  70. Gancarz AJ (1978) U-Pb age (2.05  ×  109 years) of the Oklo natural fission reactors 4851 uranium deposit. In: Proceedings of the natural fission reactors. IAEA, Vienna, pp 513–520Google Scholar
  71. Gandhi SS (1978) Geological setting and genetic aspect of the uranium occurrences in the Kaipokok Bay – Big River area. Econ Geol 73:1492–1522CrossRefGoogle Scholar
  72. Gatzweiler R (1987) Uranium mineralization in the Proterozoic Otish Basin, Central Québec, Canada. Gebruder Borntraeger, Berlin/Stuttgart. Monogr Ser Miner Deposits 27:27–48Google Scholar
  73. Gauthier-Lafaye F (1986) Les gisements d’uranium du Gabon et les réacteurs d’Oklo. Modèle métallogénique de gites à fortes teneurs du Protérozoique inférieur. Mém Sci Géol, Strasbourg Univ 78, 206 pGoogle Scholar
  74. Gillerman VS (2008) Newly discovered intrusives at the Lemhi Pass thorium – REE iron oxide district, Idaho: Cambrian syenite and mystery ultramafics – signatures of a buried alkaline complex or two systems ? 104th Cordilleran and 60th Rocky Mountain sections joint meeting, paper no. 9–4Google Scholar
  75. Goldhaber MB, Reynolds RL, Rye RO (1978) Origin of a South Texas roll-type uranium deposit: II. Sulfide petrology and sulfur isotope studies. Econ Geol 73:1690–1705CrossRefGoogle Scholar
  76. Golubev VN, Cuney M, Poty B (2000) Phase composition and U-Pb isotopic systems of pitchblende of quartz-calcite-pitchblende veins at Schlema-Alberoda deposit (Erzgebirge). Geol Ore Deposits 42:761–773Google Scholar
  77. Grosse P (2007) Los granitos porfíricos y orbiculares del sector Centro-oriental de la Sierra de Velasco: génesis y significación regional. Unpublished Ph.D. thesis, Salta University, Argentina 285Google Scholar
  78. Gültekin AH, Örgün Y, Suner F (2003) Geology, mineralogy and fluid inclusion data of the Kizilcaoren fluorite-barite-REE deposit, Eskisehir, Turkey. J Asian Earth Sci 21:365–376CrossRefGoogle Scholar
  79. Hanly A (2005) Evolution of Mesoproterozoic basins and their economic potential. PhD thesis, Queen’s University, Canada, 276 pGoogle Scholar
  80. Hansley PL, Spirakis CS (1992) Genesis of tabular uranium-vanadium deposits in the Morrison formation, Colorado Plateau. Econ Geol 87:352–365CrossRefGoogle Scholar
  81. Hecht L, Cuney M (2000) Hydrothermal alteration of monazite in the Precambrian basement of the Athabasca: implications for the genesis of unconformity related deposits. Miner Deposita 35:791–795CrossRefGoogle Scholar
  82. Hedrick JB (2008) “Thorium” in 2007 minerals yearbook – Thorium (advance release), U.S. Geological Survey, U.S. Department of the Interior 76.1–76–4Google Scholar
  83. Hitzman MW, Valenta RK (2005) Uranium in iron oxide-copper-gold (IOCG) systems. Econ Geol 100:1657–1661Google Scholar
  84. Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precamb Res 58:241–287CrossRefGoogle Scholar
  85. Holcombe RJ, Pearson PJ, Oliver NHS (1992) Structure of the Mary Kathleen fold belt. In: Stewart AJ, Blake DH (eds) Detailed studies of the Mount Isa Inlier. Aust Geol Surv Organ Bull 243:257–287Google Scholar
  86. Holliger P, Cathelineau M (1986) Le chronomètre U-Pb en milieu uranifère: application aux gisements hydrothermaux d’U associés au batholite de Mortagne (Vendée, France). Chron Rech Min 485:33–43Google Scholar
  87. Hu RZ, Burnard PG, Bi XW, Zhou MF, Peng JT, Su WC, Zhao JH (2009) Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi province, China: evidence from He, Ar and C isotopes. Chem Geol 266:86–95CrossRefGoogle Scholar
  88. Hussey KJ (2003) Rare earth element mineralisation in the eastern Arunta Region. Australia, Northern Territory Geological Survey Report 2003–004, 20 pGoogle Scholar
  89. IAEA (1987) Thorium-based nuclear fuel: current status and perspectives, technical report IAEA-TECDOC-412. International Atomic Energy Agency (IAEA), ViennaGoogle Scholar
  90. IAEA (2001) Analysis of uranium supply to 2050, STI-PUB-1104. IAEA, ViennaGoogle Scholar
  91. IAEA (2002) Thorium fuel utilization: options and trends. IAEA-TECDOC-1319. IAEA, Vienna, 376 pGoogle Scholar
  92. IAEA (2006) Global and identified resources. Nuclear development forty years of uranium resources production and demand in perspective, “The red book retrospective”. NEA/OCDE/IAEA, Paris, 279 pGoogle Scholar
  93. IAEA (2005) Uranium 2005: resources, production and demand. OECD, Paris, 403 pGoogle Scholar
  94. IAEA (2009) Uranium 2009: resources, production and demand. NEA/OCDE/IAEA, Paris, 454 pGoogle Scholar
  95. IAEA-NEA (2007) Uranium 2007: resources, production and demand 2008. OECD, ParisGoogle Scholar
  96. Idir EH, Renard JP (2002) Synthèse des résultats de l’exploration de l’uranium dans l’Anti-Atlas (Maroc). Mines Géologie et Energie Rabat 58:69–94Google Scholar
  97. Ihlen PM (1983) Geologiske og petrokjemiske resultater fra diamantboring på Sæteråsen niob-forekomst. Norg Geol Unders, Fagrapport, 1800/76B, 39 pGoogle Scholar
  98. Ishukova LP, Modnikov IS, Citchev IV (1991) Uranium ore-forming systems of continental volcanism regions. Geol Rudn Mestorozhdenye 3:16–25 (in Russian)Google Scholar
  99. Javoy M (1999) Chemical earth models. C R Acad Sci Paris 329:537–555Google Scholar
  100. Jayaram KMV (1987) An overview of world thorium resources, incentives for further exploration and forecast for thorium requirements in the near future. In: IAEA-TECDOC—412, Thorium-based nuclear fuel: current status and perspectives. International Atomic Energy Agency, Vienna, 158 pGoogle Scholar
  101. Jerden JL Jr, Sinha AK (1999) Geology, mineralogy and geochemistry of the Coles Hill uranium deposit, Virginia: an example of a structurally controlled, hydrothermal apatite-coffinite-uraninite orebody. Geol Soc America, Abstracts with Programs 31:A-69Google Scholar
  102. Jiang Y, Ling H, Jiang S (2005) Mantle derived fluid and uranium mineralization: evidence from the world-class Xiangshan uranium deposit, SE China. In: Proceedings of 8th SGA meeting, Beijing, China. Mao J, Bierlein FP (eds) Mineral deposit research: meeting the global challenge. Springer, Berlin/Heidelberg/New York, 269–271Google Scholar
  103. Jiarong Z, Zhutian G (1988) The geological characteristics and metallogenetic control factors of the Lianshanguan uranium deposit, Northeast China. Precamb Res 39:51–64CrossRefGoogle Scholar
  104. Johnson JP, Cross KC (1995) U-Pb geochronological constraints on genesis of the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ Geol 90:1046–1063CrossRefGoogle Scholar
  105. Kazanskii VI (2004) The unique Central Aldan gold-uranium ore district, Russia. Geol Rud Mestorozhdenii 46:195–211Google Scholar
  106. Kazansky VI, Laverov NP (1978) Uranium. In: Smirnov VI (ed) Ore deposits of the USSR. Nedra, Moscow, pp 327–333 (in Russian)Google Scholar
  107. Kish L, Cuney M (1981) Uraninite – albite veins from the Mistamisk Valley of the Labrador Trough, Québec. Miner Mag 44:471–483CrossRefGoogle Scholar
  108. Kogarko LN, Kononova VA, Orlova MP, Woolley AR (1995) The alkaline rocks and carbonatites of the world. Part II: Former USSR. Chapman & Hall, LondonCrossRefGoogle Scholar
  109. Kondrat’eva IA, Maksimova IG, Nadyarnykh GI (2004) Uranium distribution in ore-bearing rocks of the Malinov deposit: evidence from fission radiography. Lithol Mineral Res 39:333–344CrossRefGoogle Scholar
  110. Kříbek B, Žák K, Spangenberg JE, Jehlicka J, Prokes S, Kominek J (1999) Bitumens in the late Variscan hydrothermal vein-type uranium deposit of Pribram, Czech Republic; sources, radiation-induced alteration, and relation to mineralization. Econ Geol 94:1093–1114CrossRefGoogle Scholar
  111. Kříbek B, Knésl I, Pasava J, Caruthers H, Sykorová I, Jehlicka J (2005) Hydrothermal alteration of the graphitized organic matter at the Kansanshi Cu (Au-, U-) deposit, Zambia. In: Proceedings of 8th SGA meeting Beijing, China. Mao J, Bierlein FP (eds) Mineral deposit research: meeting the global challenge, Springer, Berlin/Heidelberg/New York, pp 277–280Google Scholar
  112. Kříbek B, Žák K, Dobeš P, Leichmann J, Pudilová M, René M, Scharm B, Scharmová M, Hájek A, Holeczy D, Hein UF, Lehmann B (2009) The Rožná uranium deposit (Bohemian Massif, Czech Republic): shear zone-hosted, late Variscan and post-Variscan hydrothermal mineralization. Miner Deposita 44:99–128CrossRefGoogle Scholar
  113. Kushev VG (1972) Alkaline Metasomatites of the Precambrian, Nedra, Leningrad, 191 p, (in Russian)Google Scholar
  114. Lange G, Freyhoff G (1991) Geologie und Bergbau in der Uranlagerstätte Ronneburg/Thüringen. Erzmetal 44:264–269Google Scholar
  115. Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42:547–569CrossRefGoogle Scholar
  116. Langmuir D, Herman JS (1980) The mobility of thorium in natural waters at low temperatures. Geochim Cosmochim Acta 44:1753–1766CrossRefGoogle Scholar
  117. Lentz D (1996) U, Mo, and REE mineralization in late-tectonic granitic pegmatites, south west Grenville Province, Canada. Ore Geol Rev 11:197–227CrossRefGoogle Scholar
  118. Leroy J (1984) Episyénitisation dans le gisement d’uranium du Bernardan (Marche): comparaison avec des gisements similaires du Nord Quest du Massif Central français. Miner Deposita 19:26–35CrossRefGoogle Scholar
  119. Leroy J, George-Aniel B (1992) Volcanism and uranium mineralisations: the concept of source rock and concentration mechanism. J Volcanol Geotherm Res 50:247–272CrossRefGoogle Scholar
  120. Lindahl I (2007) Thorium resources in Norway. The Geological Survey of Norway internal reportGoogle Scholar
  121. Linnen RL, Cuney M (2005) Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen RL, Samson IM (eds) Rare-element geochemistry and mineral deposits. Geological association of Canada, short course notes 17. Geological Association of Canada, St. John’s, pp 45–67Google Scholar
  122. Lobato LM, Forman JMA, Fuzikawa K, Fyfe WS, Kerrich R (1983) Uranium in overthrust Archaean basement. Bahia. Brazil. Can Mineral 21:647–654Google Scholar
  123. Lorilleux G, Jebrak M, Cuney M, Baudemont D (2002) Polyphase hydrothermal breccias associated with unconformity-related uranium mineralization (Canada): from fractal analysis to structural significance. J Struct Geol 24:323–338CrossRefGoogle Scholar
  124. Lottermoser BG (1990) Rare-earth element mineralization within the Mt. Weld carbonatite laterite, Western Australia. Lithos 24:151–167CrossRefGoogle Scholar
  125. Ludwig KR, Simmons KR (1992) U-Pb dating of uranium deposits in collapse breccia pipes of the Grand Canyon region. Econ Geol 87:1747–1765CrossRefGoogle Scholar
  126. Luo M, Guolong G, Guolin G, Liu C (2010) Occurrence state of thorium in Baotou rare earth concentrate. Chin J Rare Metals 34:292–316 (in Chinese)Google Scholar
  127. Maas R, McCulloch MT, Campbell IH, Page RW (1987) Sm–Nd isotope systematics in uranium–rare earth mineralisation at the Mary Kathleen uranium mine, Queensland. Econ Geol 82:1805–1826CrossRefGoogle Scholar
  128. Mann AW, Deutscher RL (1978) Genesis principles for the precipitation of carnotite in calcrete drainage in Western Australia. Econ Geol 73:1724–1737CrossRefGoogle Scholar
  129. Mathieu R, Cuney M, Cathelineau M (2000) Geochemistry of palaeofluids circulation in the Franceville basin and around Oklo natural nuclear reaction zones (Gabon). J Geochem Explor 69–70:245–249CrossRefGoogle Scholar
  130. Mathieu R, Zetterström L, Cuney M, Gauthier-Lafaye F, Hidaka H (2001) Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo-Okélobondo and Bangombé natural nuclear reaction zones (Franceville basin, Gabon). Chem Geol 171:147–171CrossRefGoogle Scholar
  131. McGill BD, Marlatt RB, Matthews RB, Sopuck VJ, Homeniuk LA (1993) The P2 North uranium deposit; Saskatchewan: Canada. Explor Min Geol 2:321–331Google Scholar
  132. McKay D, Miezitis Y (2001) Australia’s uranium resources, geology and development of deposits. Mineral resource report 1. AGSO Geoscience Australia, Canberra, 200 pGoogle Scholar
  133. Meneghel L (1979) Uranium occurrence in the Katanga System of north-western Zambia. In: Uranium deposits in Africa, geology and exploration. IAEA, Vienna, pp 97–122Google Scholar
  134. Mernagh TP, Miezitis Y (2008) A review of the geochemical processes controlling the distribution of thorium in the Earth’s crust and Australia’s thorium resources. Geoscience Australia, 2008/05, Canberra, 48 pGoogle Scholar
  135. Min MZ, Luo XZ, Mao SL (2002) The Saqisan mine – a paleokarst uranium deposit, South China. Ore Geol Rev 19:79–93CrossRefGoogle Scholar
  136. Moine B, Rakotondratsima C, Cuney M (1985) Les pyroxénites à urano-thorianite du Sud Est de Madagascar: conditions physico-chimiques de la métasomatose. Bull Minér 108:325–340Google Scholar
  137. Moine B, Ramambazafy A, Rakotondrazafy M, Ravololomiandrinarivo B, Cuney M, De Parseval P (1998) The role of flour-rich fluids in the formation of the thorianite and sapphire deposits from SE Madagascar. Miner Mag 62:999–1000CrossRefGoogle Scholar
  138. Montel JM (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146CrossRefGoogle Scholar
  139. Morales G, Nadal PJ, Merino JL, Gasos P (1985) Uranium recovery as a by-product from radioactive coal. In: Advances in uranium processing and recovery from non-conventional sources. IAEA TC 491/16. IAEA, Vienna, pp 275–287Google Scholar
  140. Morton RD, Abut A, Gandhi SS (1978) Fluid inclusion studies of the Rexpar uranium fluorite deposit, Birch Island, British Columbia. In: Current research. Bul Geol Surv Can Pap 78–1B:137–140Google Scholar
  141. Nash JT, Granger HC, Adams SS (1981) Geology and concept of genesis of important types of uranium deposits. Econ Geol (75th Anniv vol):63–116Google Scholar
  142. Netto AM (1983) Le gisement d’uranium d’Itataïa (Brésil). Thesis, Clermont Ferrand University, FranceGoogle Scholar
  143. Ngongo-Kashisha (1975) Sur la similitude entre les gisements uranifères (type Shinkolobwe) et les gisements cuprifères (type Kamoto) au Shaba Zaïre. Soc Géol Belg Ann 98:449–462Google Scholar
  144. OECD/NEA (2007) Management of recyclable fissile and fertile materials. OECD, Paris, 84 pGoogle Scholar
  145. Oliver NHS, Pearson PJ, Holcombe RJ, Ord A (1999) Mary Kathleen metamorphic hydrothermal uranium – rare-earth element deposit: ore genesis and numerical model of coupled deformation and fluid flow. Aust J Earth Sci 46:467–484CrossRefGoogle Scholar
  146. Page RW (1983) Chronology of magmatism, skarn formation, and uranium mineralization, Mary Kathleen, Queensland, Australia. Econ Geol 78:838–853CrossRefGoogle Scholar
  147. Pagel M, Cavellec S, Forbes P, Gerbaut O, Vergely P, Wagani I, Mathieu R (2005) Uranium deposits in the Arlit area (Niger). In: Proceedings of the 8th SGA meeting, Beijing, China. Mao J, Bierlein FP (eds) Mineral deposit research: meeting the global challenge. Springer, Berlin/Heidelberg/New York, pp 303–305Google Scholar
  148. Pearson JM, Taylor WR, Barley ME (1996) Geology of the alkaline Gifford creek complex, Gascoyne complex, Western Australia. AustJ Earth Sci 43:299–309CrossRefGoogle Scholar
  149. Peiffert C, Nugyen-Trung C, Cuney M (1996) Uranium in granitic magmas: Part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-NaX (X  =  Cl, F) system at 770°C, 2 kbar. Geochim Cosmochim Acta 60:1515–1529CrossRefGoogle Scholar
  150. Petrov VA, Golubev VN, Golovin, VA (2003) An unique uranium mineralization in pillow lavas, Dornot ore field, Mongolia. Proc Inter Conf, M. Cuney Edit., “Uranium Geochemistry 2003”, Nancy, pp 289–292Google Scholar
  151. Polito PA, Kyser KT, Stanley C (2007) The Proterozoic, albitite-hosted, Valhalla uranium deposit, Queensland, Australia, a description of the alteration assemblage associated with uranium mineralisation in diamond drill hole. Miner Deposita 44:11–40CrossRefGoogle Scholar
  152. Poty B, Leroy J, Cathelineau M, Cuney M, Friedrich M, Lespinasse M, Turpin L (1986) Uranium deposits spatially related to granites in the French part of the Hercynian orogen. In: Vein type uranium deposits, IAEA-TECDOC-361. International Atomic Energy Agency, Vienna, pp 215–246Google Scholar
  153. Pretorius DA (1961) The nature of the Witwatersrand gold-uranium deposits. In: Wolf KH (ed) Handbook of stratabound and stratiform ore deposits. Elsevier, Amsterdam, pp 29–88Google Scholar
  154. Ragheb M, Tsoukalas L (2010) Global and USA thorium and rare earth elements resources. In: Proceedings of the 2nd thorium energy alliance conference, the future thorium economy, Google Campus, Mountain View, California, pp 1–17Google Scholar
  155. Ranstead TW (1994) Brockman project East Kimberley region, Western Australia. Holdings Limited, West Coast Holdings Ltd. Annual Report (1993) Prospecting licences p80/1255–1268, open file company report (unpublished) to the Department of Industry and Resources, Western Australia A 40911 of I 10983Google Scholar
  156. Reynolds LJ (2000) Geology of the Olympic Dam Cu-U-Au-Ag deposit. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits, 1. Porter Geoconsultancy Pty Ltd, Linden Park, pp 93–104Google Scholar
  157. Richard A, Pettke T, Cathelineau M, Boiron MC, Mercadier J, Cuney M, Derome D (2010) Brine–rock interaction in the Athabasca basement (McArthur River U deposit, Canada): consequences for fluid chemistry and uranium uptake. Terra Nova 22:303–308Google Scholar
  158. Richards MN (1985) Annual report for 1984 on exploration licence 80/113, Cummins Range, Mt. Bannerman, SE 52–13, Western Australia. CRA Exploration Pty. Ltd: Open File Company Report (unpublished) to the Department of Industry and Resources, Western Australia, 246 pGoogle Scholar
  159. Roy PS (1999) Heavy mineral beach placers in southeastern Australia: their nature and genesis. Econ Geol 94:567–588CrossRefGoogle Scholar
  160. Sanguinetti H, Oumarou J, Chantret F (1982) Localisation de l’uranium dans les figures de sédimentation des grès hôtes du gisement d’Akouta, Niger. C R Acad Sci Paris 294:591–594Google Scholar
  161. Scherbak MP, Bobrov OB (2005) Mineral deposits of Ukraine, vol I: Metalliferous mineral deposits, 783 pGoogle Scholar
  162. Scaillet S, Cuney M, Le Carlier VC, Cheilletz A, Royer JJ (1996) Cooling patterns and mineralization history of the Saint Sylvestre and Western Marche leucogranite plutons, French Massif Central. II – Thermal modelling and implications for the mechanisms of U-mineralization. Geochim Cosmochim Acta 60:4673–4688CrossRefGoogle Scholar
  163. Schorscher HD, Shea ME (1992) The regional geology of the Poços de Caldas alkaline complex: mineralogy and geochemistry of selected nepheline syenites and phonolites. J Geochem Explor 45:25–51CrossRefGoogle Scholar
  164. Schovsbo NH (2002) Uranium enrichment shorewards in black shales: a case study from the Scandinavian Alum Shale. GFF 124:107–115CrossRefGoogle Scholar
  165. Sibbald TII, Munday RJC, Lewry JF (1976) The geological setting of uranium mineralization in northern Saskatchewan; in Uranium in Saskatchewan (Dunn CE Ed). Saskatchewan Geol Soc Spec Publ 3:51–98Google Scholar
  166. Sircombe KN (1997) Detrital mineral SHRIMP geochronology and provenance analysis of sediments in Eastern Australia: Unpublished PhD thesis, Australian National University, 411 pGoogle Scholar
  167. Smellie JAT, Laurikko J (1984) Skuppesavon, northern Sweden: a uranium mineralisation associated with alkali metasomatism. Miner Deposita 19:183–192CrossRefGoogle Scholar
  168. Sørensen H, Rose-Hansen J, Nielsen BL, Løvborg L, Sørensen E, Lundgaard T (1974) The uranium deposit at Kvanefjeld, Ilímaussaq intrusion, South Greenland. Rep Grønlands Geol Unders 60:54Google Scholar
  169. Soudry D, Segal I, Nathan Y, Glenn CR, Halicz L, Lewy Z, VonderHaar DL (2004) 44Ca/42Ca and 143Nd/144Nd isotope variation in Cretaceous–Eocene Tethyan francolites and their bearing on phosphogenesis in the southern Tethys. Geology 32:389–392CrossRefGoogle Scholar
  170. Spirakis CS (1996) The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geol Rev 11:53–69CrossRefGoogle Scholar
  171. Staatz MH (1978) I and L uranium and thorium vein system, Bokan Mountain, southeastern Alaska. Econ Geol 73:512–523CrossRefGoogle Scholar
  172. Staatz MH (1979) Geology and mineral resources of the Lemhi Pass thorium district, Idaho and Montana. USGS Professional Paper 1049-A, 90 pGoogle Scholar
  173. Staatz MH, Armbrustmacher TJ, Olson JC, Brownfield IK, Brock MR, Lemons JF, Coppa LV, Clingan BV (1979) Principal thorium resources in the United States. USGS Circ 805:42Google Scholar
  174. Stumpfl EF, Kirikoglu MS (1985) Fluorite-barite-rare earths deposits at Kizilcaoren, Turkey. S Mitt Österr Geol Ges 78:193–200Google Scholar
  175. Syed HS (1999) Comparison studies adsorption of thorium and uranium on pure clay minerals and local Malaysian soil sediments. J Radioanal Nucl Chem 241:11–14CrossRefGoogle Scholar
  176. Taylor WR, Page RW, Esslemont G, Rock NMS, Chalmers DI (1995) Geology of the volcanic-hosted Brockman rare-metals deposit, Halls Creek Mobile Zone, northwest Australia. I. Volcanic environment, geochronology and petrography of the Brockman Volcanic. Miner Petrol 52:209–230CrossRefGoogle Scholar
  177. Trueman NA, Long JVP, Reed SJB, Chinner GA (1988) The lead-uranium systematics, and rare earth element distributions of some Olympic Dam and Stuart shelf mineralisation. Western Mining Corporation, Adelaide. Unpublished report K/3143Google Scholar
  178. Turpin L, Maruejol P, Cuney M (1988) U-Pb – Rb-Sr and Sm-Nd chronology of granitic basement, hydrothermal albitites and uranium mineralization (Lagoa Real, South-Bahia. Brazil). Contrib Mineral Petrol 98:139–147CrossRefGoogle Scholar
  179. Turpin L, Leroy J, Sheppard SMF (1990) Isotopic systematics (O, H, C, Sr, Nd) of superimposed barren and U-bearing hydrothermal systems in a granite, Massif Central, France. Chem Geol 88:85–96CrossRefGoogle Scholar
  180. Twenhofel WS, Buck KL (1956) The geology of thorium deposits in the United States. In: Proceedings of the international conference on peaceful uses atomic energy. New York, United Nations: Geology of U and Th, pp 562–567Google Scholar
  181. Upton BGJ, Emeleus, CH (1987) Mid Proterozoic alkaline magmatism is southern Greenland. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Geological Society of London, Special Publication 30. Blackwells, Oxford, pp 449–471Google Scholar
  182. Van Gosen BS, Lowers HA (2007) Iron Hill (Powderhorn) carbonatite complex, Gunnison county, CO – a potential source of several uncommon mineral resources. Min Eng 59:56–62Google Scholar
  183. Velichkin VI, Kushnerenko VK, Tarasov NN, Andreeva OV, Kiseleva GD, Krylova TL, Donikova OA, Golubev VN, Golovin VA (2005) Geology and formation conditions of the Karku unconformity type deposit in the Northern Ladoga region (Russia). Geol Ore Deposits 47:87–112Google Scholar
  184. Vels B, Fritsche R (1988) Sodium metasomatism in the Kitongo uranium occurrence near Poli, Cameroon. Uranium 4:365–383Google Scholar
  185. Verwoerd WJ (1986) Mineral deposits associated with carbonatites and alkaline rocks. In: Anhaeusser CR, Maske S (eds) Mineral deposits of South Africa, vol I and II. Geol Soc South Africa, Johannesburg, pp 2173–2192Google Scholar
  186. Von Pechman E, Binaconi F (1982) Synmetamorphic uranium mineralization from Tiraun, Graubfinden, Switzerland. Miner Mag 46:173–178CrossRefGoogle Scholar
  187. Waber N (1992) The supergene thorium and rare-earth element deposit at Morro do Ferro, Poços de Caldas, Minas Gerais, Brazil. J Geochem Explor 45:113–157CrossRefGoogle Scholar
  188. Wallace AR, Whelan JF (1986) The Schwartzwalder uranium deposit; III, Alteration, vein mineralization, light stable isotopes, and genesis of the deposit. Econ Geol 81:872–888CrossRefGoogle Scholar
  189. Wang J, Tatsumoto M, Li X, Premo WR, Chao ECT (1994) A precise 232Th/208Pb chronology of fine-grained monazite-age of the Bayan Obo REE-Fe-Nb ore deposit. China Geochim Cosmochim Acta 58:3155–3169CrossRefGoogle Scholar
  190. Weber F (1968) Une série précambrienne du Gabon: le Francevillien. Sédimentologie, géochimie et relation avec les gîtes minéraux associés: Mém Serv Carte Géol Alsace Lorraine, 328 pGoogle Scholar
  191. Wenrich KJ, Titley SR (2008) Uranium exploration for northern Arizona (USA) breccia pipes in the 21st century and consideration of genetic models. Arizona Geol Soc 22:295–309Google Scholar
  192. Woolley AR (1987) The alkaline rocks and carbonatites of the world. Part I: North and South America. British Museum (Natural History) and University of Texas Press, London, 216 pGoogle Scholar
  193. Woolley AR (2001) Alkaline rocks and carbonatites of the world: Africa. The Geological Society of London/The Natural History Museum, London, 372 pGoogle Scholar
  194. Yamazaki IM, Geraldo LP (2003) Uranium content in phosphate fertilizers commercially produced in Brazil. Appl Radiat Isot 59:133–136CrossRefGoogle Scholar
  195. Yuan Z, Bai G, Wu C, Zhang Z, Ye X (1992) Geological features and genesis of the Bayan Obo REE ore deposit, Inner Mongolia, China. Appl Geochem 7:429–442CrossRefGoogle Scholar
  196. Zachariah JK, Bhaskar Rao YJ, Srinivasan R, Gopalan K (1999) Pb, Sr and Nd isotope systematics of uranium mineralised stromatolitic dolomites from the Proterozoic Cuddapah Supergroup, south India: constraints on age and provenance. Chem Geol 162:49–64CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.UMR G2R 7566 CNRS – CREGUNancy UniversitéVandoeuvre CedexFrance

Personalised recommendations