Factors Influencing Soil Organic Carbon Stock Variations in Italy During the Last Three Decades



Soils contain about three times the amount of carbon globally available in vegetation, and about twice the amount in the atmosphere. However, soil organic carbon (SOC) has been reduced in many areas, while an increase in atmospheric CO2 has been detected. Recent research works have shown that it is likely that past changes in land use history and land management were the main reasons for the loss of carbon rather than higher temperatures and changes of precipitation resulting from climate change. The primary scope of this work was to estimate soil organic carbon stock (CS) variations in Italy during the last three decades and to relate them to land use changes. The study was also aimed at finding relationships between SOC and factors of pedogenesis, namely pedoclimate, morphology, lithology, and land use, but also at verifying the possible bias on SOC estimation caused by the use of data coming from different sources and laboratories. The soil database of Italy was the main source of information in this study. In the national soil database is stored information for 20,702 georeferentiated and dated observations (soil profiles and minipits) analysed for routine soil parameters. Although the observations were collected from different sources, soil description and analysis were similar, because all the sources made reference to the Soil Taxonomy and WRB classification systems, and soil analyses followed the Italian official methods. Besides horizon description and analysis, soil observations had a set of site information including topography, lithology, and land use. The SOC and bulk density referred to the first 50 cm, thus CS was calculated on the basis of the weighted percentage of SOC, rock fragments volume, and bulk density. A set of geographic attributes were considered to spatialize point information, in particular, DEM (100 m) and derived SOTER morphological classification, soil regions (reference scale 1:5,000,000) and soil systems lithological groups (reference scale 1:500,000), soil moisture and temperature regimes (raster maps of 1 km pixel size), land cover (CORINE project, reference scale 1:100,000) at three reference dates: years 1990 and 2000, and an original update to 2008, obtained with field point observations. The interpolation methodology used a multiple linear regression (MLR). CS was the target variable, while predictive variables were the geographic attributes. Basic statistical analysis was performed first, to find the predictive variables statistically related to CS and to verify the bias caused by different laboratories and surveys. After excluding the biased datasets, the best predictors were selected using a step-wise regression method with Akaike Information Criterion (AIC) as selection and stop criterion. The obtained MLR model made use of the following categorical attributes: (i) decade, (ii) land use, (iii) SOTER morphological class, (iv) soil region, (v) soil temperature regime, (vi) soil moisture regime, (vii) soil system lithology, (viii) soil temperature, (ix) soil aridity index (dry days per year), and, (x) elevation. The interaction between decade and land use variables was also considered in the model. Results indicated that CS was highly correlated with the kind of main type of land use (forest, meadow, arable land), soil moisture and temperature regimes, lithology, as well as morphological classes, and decreased notably in the second decade but slightly increased in the third one, passing form 3.32 Pg, to 2.74 Pg and 2.93 Pg respectively. The bias caused by the variables like “laboratory” and “survey source” could be as large as the 190%.


Carbon sequestration Land use change Factor of pedogenesis Multiple regression 


  1. Alakukku, L. (1996). Persistence of soil compaction due to high axle load traffic. II. Long-term effects on the properties of fine-textured and organic soils. Soil and Tillage Research 37(4):223–238.CrossRefGoogle Scholar
  2. Arrouays, D., Balesdent, J., Germon, J.C., Jayet, P.A., Soussana, J.F. and Stengel, P. (2002a). Mitigation of the greenhouse effect. Increasing carbon stocks in French agricultural soils? Synthesis of an assessment report by the French Instritute for Agricultural Research (INRA) on request of the French Ministry for Ecology and sustainable development. INRA, France, 36pp.Google Scholar
  3. Arrouays, D., Balesdent, J., Gerom, J.C., Jayet, P.A., Soussana, J.F. and Stengel, P. (2002b). Contribution a la lutte contre l’effet de serre: Stocker du carbone dans les sols agricules de France? INRA, France, 332pp.Google Scholar
  4. Arrouays, D., Deslais, W. and Badeau, V. (2001). The carbon content of topsoil and its geographical distribution in France. Soil Use and Management 17:7–11.CrossRefGoogle Scholar
  5. Arrouays, D. and Morvan, X. (2008). Inventory and monitoring report. ENVASSO Work package 2 report. JRC, Cranfield, UK.Google Scholar
  6. Bakken, A.K., Brandsæter, L.O., Eltun, R., Hansen, S., Mangerud, K., Pommeresch, R. and Riley, H. (2009). Effect of tractor weight, depth of ploughing and wheel placement during ploughing in an organic cereal rotation on contrasting soils. Soil and Tillage Research 103(2):433–441. doi: 10.1016/j.still.2008.12.010.CrossRefGoogle Scholar
  7. Batjes, N.H. (2008). Mapping soil carbon stocks of Central Africa using SOTER. Geoderma, Elsevier, Amsterdam 146(1–2):58–65. doi: 10.1016/j.geoderma.2008.05.006.CrossRefGoogle Scholar
  8. Bellamy, P.H. (2008). UK losses of soil carbon – due to climate change? Report on the conference Climate change – can soil make a difference? Brussels, Thursday 12 June 2008. Full presentation. Available via DIALOG. Cited 13 August 2009.
  9. Bellamy, P.H., Loveland, P.J., Bradley, R.I., Lark, R.M. and Kirk, G.J.D. (2005). Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248.CrossRefGoogle Scholar
  10. Bouwman, A. (2001). Global Estimates of Gaseous Emissions from Agricultural Land. FAO, Rome, p. 106.Google Scholar
  11. Brunetti, M., Maugeri, M., Monti, F. and Nanni, T. (2004). Changes in daily precipitation frequency and Distribution in Italy over the last 120 years. Journal of Geophysical Research D: Atmospheres 109 (5):D05102.CrossRefGoogle Scholar
  12. Calzolari, C. and Ungaro, F. (2005). La carta della dotazione in sostanza organica della pianura Emiliano Romagnola. Il suolo 34–36(1–3):29–32. Available via DIALOG. Cited 13 August 2009.Google Scholar
  13. Carre, F., Mcbratney, A.B., Mayr, T. and Montanarella, L. (2007). Digital soil assessments: Beyond DSM. Geoderma, Elsevier, Amsterdam 142(1–2):69–79. doi: 10.1016/j.geoderma.2007.08.015.CrossRefGoogle Scholar
  14. Castrignanò, A., Costantini, E.A.C., Barbetti, R. and Sollitto, D. (2009). Accounting for extensive topographic and pedologic secondary information to improve soil mapping. Catena 77:28–38.CrossRefGoogle Scholar
  15. Cerli, C., Celi, L., Bosio, P., Motta, R. and Grassi, G. (2009). Effects of land use change on soil properties and carbon accumulation in the Ticino Pank (North Italy). In: G. Sartori (ed.), Studi Trentini di Scienze Naturali. Suoli degli ambienti alpini. volume 85, Museo tridentino doi scienze naturali, Trento, pp. 83–92.Google Scholar
  16. Chai, X., Shen, C., Yuan, X. and Huang, Y. (2008). Spatial prediction of soil organic matter in the presence of different external trends with REML-EBLUP. Geoderma, Elsevier, Amsterdam 148(2):159–166.CrossRefGoogle Scholar
  17. Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J. et al. (2005). Europe-wide reduction in primary productivity caused y heat and drought in 2002. Nature 437:529–533.CrossRefGoogle Scholar
  18. Costantini, E.A.C., Barbetti, R. and L’Abate, G. (2007). Soils of Italy: Status, problems and solutions. In: P. Zdruli, G. Trisorio Liuzzi (eds.), Status of Mediterranean Soil Resources: Actions Needed to Support their Sustainable Use. Mediterranean Conference Proceedings, Tunis, Tunisia, IAM Bari (Italy), pp. 165–186.Google Scholar
  19. Costantini, E.A.C., Barbetti, R. and L’Abate, G. (2009). The soil aridity index to asses the desertification risk. Advances in GeoEcology (in press).Google Scholar
  20. Costantini, E.A.C., Castelli, F. and L’Abate, G. (2005). Use of the EPIC model to estimate soil moisture and temperature regimes for desertification risk in Italy. Advances in GeoEcology 251–263.Google Scholar
  21. Costantini, E.A.C., Castelli, F., Lorenzoni, P. and Raimondi, S. (2002). Assessing soil moisture regimes with traditional and new methods. Soil Science Society of America Journal 66: 1889–1896.CrossRefGoogle Scholar
  22. Costantini, E.A.C. and L’Abate, G. (2009). The soil aridity index to asses the desertification risk. Advances in GeoEcology 40 CATENA VERLAG, 35447 Reiskirchen (in press).Google Scholar
  23. Costantini, E.A.C., Magini, S. and Napoli, R. (2003). A Land System database of Italy. 4th European Congress on Regional Geoscientific Cartography and Information Systems. Proceedings 1:124–126. Available via DIALOG. Cited 13 August 2009.
  24. Covington, W.W. (1981). Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology 62:41–48.CrossRefGoogle Scholar
  25. Dalla Valle, E. (2008). Valutazione dello stock di carbonio e delle capacità fissative delle foreste assestate e dei boschi di neoformazione nella Regione Veneto. Available via DIALOG. Cited 13 August 2009.
  26. Degobbis, D., Fonda-Umani, S., Franco, P., Malej, A., Precali, R. and Smodlaka, N. (1995). Changes in the northern Adriatic ecosystem and the hypertrophic appearance of gelatinous aggregates. Science of the Total Environment 165:43–58.CrossRefGoogle Scholar
  27. Diodato, N. and Mariani, L. (2007). Testing a climate erosive forcing model in the PO River Basin. Climate Research 33(2):195–205.CrossRefGoogle Scholar
  28. European Commission. (16 April 2002). Towards a Thematic Strategy for Soil Protection. COM 179, 16 April 2002.Google Scholar
  29. European Commission. (2006). Thematic Strategy for Soil Protection, COM 231.Google Scholar
  30. European Commission. (2008). Final Remarks. Report on the conference Climate change – can soil make a difference? Brussels, Thursday 12 June 2008.Google Scholar
  31. European Commission. (2009). European research on climate change. Catalogue of FP6 projects. Available via DIALOG. Cited 13 August 2009.
  32. European Communities. (2003). The Lucas survey European statisticians monitor territory. Luxembourg p. 24. Available via DIALOG. Cited 13 August 2009.
  33. Finke, P., Hartwich, R., Dudal, R., Ibanez, J., Jamagne, M., King, D., Montanarella, L. and Yassoglu, N. (1998). Georeferenced soil database for Europe. Manual of Procedures. Version 1.0. ESB-JRC-SAI. European Commission, EUR 18092 EN, p. 184.Google Scholar
  34. Food and Agricultural Organisation. (1974). FAO-UNESCO soil map of the word; volume 1, Legend. UNESCO, Paris.Google Scholar
  35. Food and Agricultural Organisation (FAO). (1995). Global and national soils terrain digital databases (SOTER) 74 Rev.1, FAO, Rome, Italy.Google Scholar
  36. Food and Agricultural Organisation (FAO). (1998). World reference base for soil resources. World Soil Resources Reports, 84. Rome, Italy, p. 88.Google Scholar
  37. Franzluebbers, A.J. (2002). Soil organic matter stratification ratio as an indicator of soil quality. Soil & Tillage Research 66:95–106. Elsevier Science B.V.CrossRefGoogle Scholar
  38. Gardi, C. (2005). Valutazione dello stock di carbonio nel suolo di prati stabili e seminativi avvicendati. Il suolo 34–36(1–3):46–49. Available via DIALOG. Cited 13 August 2009.Google Scholar
  39. Garlato, A., Obber, S., Vinci, I., Mancabelli, A., Parisi, A. and Sartori, G. (2009b). La determinazione dello stock di carbonio nei suoli del Trentino a partire dalla banca dati della carta dei suoli alla scala 1:250.000. In: G. Sartori (ed.), Studi Trentini di Scienze Naturali. Suoli degli ambienti alpini. volume 85, Museo trdentino doi scienze naturali, Trento, pp. 157–160.Google Scholar
  40. Garlato, A., Obber, S., Vinci, I., Sartori, G. and Manni, G. (2009a). Stock attuale di carbonio organico nei suoli di montagna del Veneto. In: G. Sartori (ed.), Studi Trentini di Scienze Naturali. Suoli degli ambienti alpini. volume 85, Museo tridentino doi scienze naturali, Trento, pp. 69–82.Google Scholar
  41. Geissen, V., Sánchez-Hernández, R., Kampichler, C., Ramos-Reyesa, R., Sepulveda-Lozada, A., Ochoa-Goana, S., de Jonga, B.H.J., Huerta-Lwangaa, E. and Hernández-Daumasa, S. (2009). Effects of land-use change on some properties of tropical soils – An example from Southeast Mexico. Geoderma, Elsevier, Amsterdam 151(3–4):87–97. doi: 10.1016/j.geoderma.2009.03.011.CrossRefGoogle Scholar
  42. Giandon, P. (2000). Riproducibilità dei risultati delle analisi del terreno nei laboratori italiani. i risultati del confronto interlaboratorio gestito dalla società italiana dei laboratori pubblici agrochimici. ARPAV Centro Agroambientale, Italy.Google Scholar
  43. Gomez, C., Viscarra Rossel, R.A. and McBratney, A.B. (2008). Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma, Elsevier, Amsterdam 146(3–4):403–411. doi: 10.1016/j.geoderma.2008.06.011.CrossRefGoogle Scholar
  44. Grimm, R., Behrens, T., Märker, M. and Elsenbeer, H. (2008). Soil organic carbon concentrations and stocks on Barro Colorado Island – Digital soil mapping using Random Forests analysis. Geoderma, Elsevier, Amsterdam 146(1–2):102–113. doi: 10.1016/j.geoderma.2008.05.008.CrossRefGoogle Scholar
  45. Grunwald, S. (2009). Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, Elsevier, Amsterdam 152(3–4):195–207. doi: 10.1016/j.geoderma.2009.06.003.CrossRefGoogle Scholar
  46. Guermandi, M. (2005). Protocollo di Kyoto. I suoli agricoli come “serbatoi” di anidride carbonica in Emilia-Romagna. ARPA Rivista N. 5 Settembre-Ottobre 2005.Google Scholar
  47. Hirmas, D.R., Amrhein, C. and Graham, R.C. (in press). Spatial and process-based modeling of soil inorganic carbon storage in an arid piedmont. Geoderma, Elsevier, Amsterdam. doi: 10.1016/j.geoderma.2009.05.005.Google Scholar
  48. Horn, R., Domzzal, H., Slowinska-Jurkiewicz, A. and van Ouwerkerk, C. (1995). The structure of the cultivated horizon of soil compacted by the wheels of agricultural tractors. Soil Compaction and the Environment. Soil and Tillage Research 35(1–2):23–36. doi: 10.1016/0167–1987(95)00479–C.CrossRefGoogle Scholar
  49. Hoyos, N.T. and Comerford, N.B. (2005). Land use and landscape effects on aggregate stability and total carbon of Andisols from the Colombian Andes. Geoderma, Elsevier, Amsterdam 129(3–4):268–278.CrossRefGoogle Scholar
  50. Huang, X., Senthilkumara, S., Kravchenko, A., Thelena, K. and Qib, J. (2007). Total carbon mapping in glacial till soils using near-infrared spectroscopy, Landsat imagery and topographical information. Geoderma, Elsevier, Amsterdam 141(1–2):34–42. doi: 10.1016/j.geoderma.2007.04.023.CrossRefGoogle Scholar
  51. Institute Francais de l’environnement (IFEN). (2007). Le stock de carbone dans les sols agricoles diminue, 121. Cited 13 August 2009.
  52. Intergovernamental Panel on Climate Change (IPCC). (2001a). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, p. 881.Google Scholar
  53. Intergovernamental Panel on Climate Change (IPCC). (2001b). Climate Change 2001: Mitigation: Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O. Davidson, R. Swart and J. Pan (eds.)], Cambridge University Press, p. 752.Google Scholar
  54. Intergovernmental Panel on Climate Change (IPCC). (2003). Good Practice Guidance for Land Use, Land Use Change and Forestry [J. Penman, M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe and F. Wagner (eds.)], IPCC/OECD/IEA/IGES, Hayama, Japan.Google Scholar
  55. Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: Mitigation of Climate Change. Contribution of Working group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave and L.A. Meyer (eds.)], Cambridge University Press, Cambridge, UK and New York, USA.Google Scholar
  56. Jenny, H. (1941). Factors of Soil Formation – A System of Quantitative Pedology. McGraw-Hill, New York, USA, p. 281.Google Scholar
  57. Jones, R.J.A., Hiederer, R., Rusco, E. and Montanarella, L. (2005). Estimating organic carbon in the soils of Europe for policy support. European Journal of Soil Science 56:655–671.CrossRefGoogle Scholar
  58. Kätterer, T., Andrén, O. and Person, J. (2004). The impact of altered management on long-term agricultural soil carbon stocks – a Swedish case study. Nutrient Cycling in Agroecosystems 70:179–187.CrossRefGoogle Scholar
  59. Kirk, G.J.D. and Bellamy, P.H. (2008). On the reasons for carbon losses from soils across England and Wales 1978–2003. Global Change Biology (in review).Google Scholar
  60. Lal, R. (2008). The role of soil organic matter in the global carbon cycle. Report on the conference Climate change – can soil make a difference? Brussels, Thursday 12 June 2008. Full presentation. Available via DIALOG. Cited 13 August 2009.
  61. L’Abate, G. and Costantini, E.A.C. (2004). GIS Pedoclimatico d’Italia. Progetto PANDA. Istituto Sperimentale Studio e Difesa del Suolo, Centro Nazionale Cartografia Pedologica, Firenze, Italia. CD-Rom.Google Scholar
  62. Lal, R., Kimble, J.M., Eswaran, H. and Stewart, B.A. (2008). Global Climate Change and Pedogenetic Carbonates. Lewis Publishers, Washington, DC. Available via DIALOG. Cited 13 August 2009.Google Scholar
  63. Lal, R., Kimble, J.M., Follet, R.F. and Stewart, B.A. (2001). Assessment Methods for Soil Carbon. Advances in Soil Science. Lewis Publishers, Washington, DC, p. 676. Available via DIALOG. Cited 13 August 2009.Google Scholar
  64. Luo, Y. and Zhou, Z. (2006). Soil Respiration and the Environment. Academic/Elsevier, San Diego, p. 328.Google Scholar
  65. Marland, G., West, T.O., Schlamadinger, B. and Canella, L. (2003). Managing soil organic carbon in agriculture: The net effect on greenhouse gas emissions. Tellus 55B:613–621.Google Scholar
  66. McBratney, A.B., Mendonca Santos, M.L. and Minasny, B. (2003). On digital soil mapping. Geoderma, Elsevier, Amsterdam 117:3–52.CrossRefGoogle Scholar
  67. Meersmans, J., De Ridder, F., Canters, F., De Baets, S. and Van Molle, M. (2008). A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma, Elsevier, Amsterdam 143(1–2):1–13. doi: 10.1016/j.geoderma.2007.08.025.CrossRefGoogle Scholar
  68. Ministero delle Politiche Agricole Alimentari e Forestali (MIPAAF). (1992). Decreto Ministeriale 11 maggio 1992 Approvazione dei Metodi ufficiali di analisi chimica del suolo. In: Suppl. ordinario alla Gazz. Uff., 25 maggio 1992, n. 121.Google Scholar
  69. Morari, F., Lugato, E., Berti, A. and Giardini, L. (March 2006). Long-term effects of recommended management practices on soil carbon changes and sequestration in north-eastern Italy. Soil Use and Management 22:71–81. doi: 10.1111/j.1475–2743.2005.00006.CrossRefGoogle Scholar
  70. Neff, J.C., Townsend, A.R., Gleixner, G., Lehman, S.J., Turnbull, J. and Bowman, W.D. (2002). Variable effects of nitrogen additions on the stability and turnover of soil carbon Nature 419:915–917.CrossRefGoogle Scholar
  71. Nyssen, J., Temesgen, H., Lemenihd, M., Zenebe, A., Haregeweyn, N. and Haile, M. (2008). Spatial and temporal variation of soil organic carbon stocks in a lake retreat area of the Ethiopian Rift Valley. Geoderma, Elsevier, Amsterdam 146(1–2):261–268. doi: 10.1016/j.geoderma.2008.06.007.CrossRefGoogle Scholar
  72. Ogle, S.M., Breidt, F., Jay, W. and Paustian, K. (2006). Bias and variance in model results associated with spatial scaling of measurements for parameterization in regional assessments. Global Change Biology 12:516–523. doi: 10.1111/j.1365–2486.2006.01106.x.CrossRefGoogle Scholar
  73. Pellegrini, S., Vignozzi, N., Costantini, E.A.C. and L’Abate, G. (2007). A new pedotransfer function for estimating soil bulk density. In: C. Dazzi (ed.), Changing Soils in a Changing Wold: The Soils of Tomorrow. Book of Abstracts. 5th International Congress of European Society for Soil Conservation, Palermo, 25–30 June 2007. ISBN: 978–88–9572–09–2.Google Scholar
  74. Petrella, F. and Piazzi, M. (2005). Il carbonio negli ecosistemi agrari e forestali del Piemonte: misure ed elaborazioni. Il suolo 34–36(1–3):33–34. Available via DIALOG. Cited 13 August 2009.Google Scholar
  75. Piazzi, M. (2006). Le attività della Regione Piemonte nel settore dello studio del carbonio. Soil Indicators for the Soil Thematic Strategy Support/Indicatori e metodologie a supporto della strategia tematica per il suolo. Ispra, ITALY – 21–23 November 2006. Available via DIALOG.,
  76. Pilli, R., Anfodillo, T. and Dalla Valle, E. (eds.)(5–8 Giugno 2006). Stima del Carbonio in foresta: metodologie ed aspetti normativi. Pubblicazione del Corso di Cultura in Ecologia, Atti del 42° corso, Università di Padova. San Vito di Cadore.Google Scholar
  77. Post, W.M. and Kwon, K.C. (2000). Soil carbon sequestration and land-use change: Processes and potential. Global Change Biology 6:317–327.CrossRefGoogle Scholar
  78. Reeves, P.C. (1997). The development of pore-scale network models for the simulation of capillary pressure-saturation-interfacial area-relative permeability relationships in multi fluid porous media. PhD Thesis, Department of Civil Engineering and Operations Research, Princeton University, New Jersey, USA.Google Scholar
  79. Reichstein, M., Ciais, P., Papale, D., Valentini, R., Running, S., Viovy, N., Cramer, W., Granier, A., Ogee, J., Allard, V. et al. (2006). Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: A joint flux tower, remote sensing and modelling analysis. Global Change Biology 12:1–18.CrossRefGoogle Scholar
  80. Righini, G., Costantini, E.A.C. and Sulli, L. (2001). La banca dati delle regioni pedologiche italiane. Bollettino della Società Italiana Scienza del Suolo 50(suppl):261–271.Google Scholar
  81. Sakamoto, Y. and Akaike, H. (1978). Analysis of cross classified data by AIC. Annals of the Institute of Statistical Mathematics 30:185–197. Available via DIALOG. Cited 13 August 2009.CrossRefGoogle Scholar
  82. Sankey, J.B., Brown, D.J., Bernard, M.L. and Lawrence, R.L. (2008). Comparing local vs. global visible and near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) calibrations for the prediction of soil clay, organic C and inorganic C. Geoderma, Elsevier, Amsterdam 148(2):149–158. doi: 10.1016/j.geoderma.2008.09.019.CrossRefGoogle Scholar
  83. Schils, R., Kuikman, P., Liski, J., van Oijen, M., Smith, P., Webb, J., Alm, J., Somogyi, Z., van den Akker, J., Billett, M. et al. (2008). Review of existing information on the interrelations between soil and climate change. Climsoil, Final Report. 16 December 2008.Google Scholar
  84. Schimel, D.S., House, J.I., Hibbard, K.A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B.H., Apps, M.J., Baker, D., Bondeau, A. et al. (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172.CrossRefGoogle Scholar
  85. Sequi, P. and De Nobili, M. (2000). Carbonio organico. In: Violante, P. (ed.), Metodi di analisi chimica del suolo. Collana di metodi analitici per l’agricoltura diretta da Paolo Sequi, Franco Angeli, Milano.Google Scholar
  86. Simbahan, G.C., Dobermann, A., Goovaerts, P., Pinga, J. and Haddix, M.L. (2006). Fine-resolution mapping of soil organic carbon based on multivariate secondary data. Geoderma, Elsevier, Amsterdam 132(3–4):471–489. doi: 10.1016/j.geoderma.2005.07.001.CrossRefGoogle Scholar
  87. Sinanet. (2009). Rete del sistema Informativo Nazionale Ambientale. Cited 13 August 2009.
  88. Sistema Informativo Agricolo Nazionale (SIN). (2009). Cited 13 August 2009.
  89. Słowińska-Jurkiewicz, A. and Domazał, H. (1991). The structure of the cultivated horizon of soil compacted by the wheels of agricultural tractors. Soil and Tillage Research 19(2–3):215–226.CrossRefGoogle Scholar
  90. Smith, P. (2008). The role of agricultural practices in keeping or increasing soil organic matter. Report on the conference Climate change – can soil make a difference? Brussels, Thursday 12 June 2008. Full presentation. Available via DIALOG. Cited 13 August 2009.
  91. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H.H., Kumar, P., McCarl, B.A., Ogle, S.M., O’Mara, F., Rice, C. et al. (2007a). Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment 118:6–28.CrossRefGoogle Scholar
  92. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H.H., Kumar, P., McCarl, B.A., Ogle, S.M., O’Mara, F., Rice, C. et al. (2007b). Agriculture. In: B. Metz, O.R. Davidson, P.R. Bosch et al. (eds.), Climate Change 2007: Mitigation. Contribution of Working group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA.Google Scholar
  93. Smith, J., Smith, P., Wattenbach, M., Gottschalk, P., Romanenkov, V.A., Shevtsova, L.K., Sirotenko, O.D., Rukhovich, D.I., Koroleva, P.V., Romanenko, I.A. and Lisovoi, N.V. (2007c). Projected changes in the organic carbon stocks of cropland mineral soils of European Russia and the Ukraine, 1990–2070. Global Change Biology 13:342–356.CrossRefGoogle Scholar
  94. Solaro, S. and Brenna, S. (2005). Il carbonio organico nei suoli e nelle foreste della Lombardia. Il suolo 34–36(1–3):24–28. Available via DIALOG. Cited 13 August 2009.Google Scholar
  95. Stolbovoy, V., Filippi, N., Montanarella, L., Piazzi, M., Petrella, F., Gallego, J. and Selvaradjou, S. (2006). Validation of the EU soil sampling protocol to verify the changes of organic carbon stock in mineral soil (Piemonte region, Italy), EUR 22339 EN, p. 41. Available via DIALOG. Cited 13 August 2009.
  96. Stolbovoy, V., Montanarella, L., Filippi, N., Jones, A., Gallego, J. and Grassi, G. (2007b). Soil sampling protocol to certify the changes of organic carbon stock in mineral soil of the european union. Institute for Environment and Sustainability. Version 2. EUR 21576 EN/2. p. 56. Office for Official Publications of the European Communities, Luxembourg. ISBN: 978-92-79-05379-5. Available via DIALOG. Cited 13 August 2009.
  97. Stolbovoy, V., Montanarella, L. and Panagos, P. (eds.) (2007a). Carbon sink enhancement in soils of Europe: Data, modelling, verification. EUR 23037 EN. European Communities, 2007. Available via DIALOG. Cited 13 August 2009.
  98. US Dept of Agriculture (USDA). (1992, 1983, 1972). Soil Conservation Service. Soil Survey Staff. National Soils Handbook. Washington, DC.Google Scholar
  99. US Dept of Agriculture (USDA). (1999, 1975). Soil Conservation Service. Soil Survey Staff. Soil Taxonomy, USDA, National natural resources Conservation Service, Washington, DC, USA.Google Scholar
  100. Van Wambeke, A. (1986). Newhall Simulation Model, a Basic Program for the IBM PC [Floppy Disk Computer File]. Dep of Agron, Cornell University, Ithaca, New York, USA.Google Scholar
  101. Vasques, G.M., Grunwald, S. and Sickman, J.O. (2008). Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma, Elsevier, Amsterdam 146(1–2):14–25. doi: 10.1016/j.geoderma.2008.04.007.CrossRefGoogle Scholar
  102. Vettraino, B., Carlino, M. and Rosati, S. (2009). La legna da ardere in Italia. Logistica, organizzazione e costi operativi. Progetto RES & RUE Dissemination. CEAR. Available via DIALOG. Cited 13 August 2009.
  103. Vitullo, M. (2006). Stime del carbonio in foresta: metodologie ed aspetti normativi. Gestione forestale sostenibile, lotta ai cambiamenti climatici e uso delle biomasse forestali: il progetto di ricerca del CISA. Progetto CISA. Porretta Terme, 7 luglio 2006. Cited 13 August 2009.
  104. Walkley, A. and Black, I.A. (1934). An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science 63:251–263.CrossRefGoogle Scholar
  105. Werner, P.C., Gerstengarbe, F.W., Fraedrich, K. and Oesterle, K. (2000). Recent climate change in the North Atlantic/European sector. International Journal of Climatology 20(5):463–471.CrossRefGoogle Scholar
  106. West, T.O., Brandt, C.C., Wilson, B.S., Hellwinckel, C.M., Tyler, D.D., Marland, G., De La Torre Ugarte, D.G., Larson, J.A. and Nelson, G. (2008). Estimating Regional Changes in Soil Carbon with high spatial resolution. Soil Science Society of America Journal 72:285–294. doi: 10.2136/sssaj2007.0113.CrossRefGoogle Scholar
  107. West, T.O. and Marland, G. (2003). Net carbon flux from agriculture: Carbon emissions, carbon sequestration, crop yield, and land-use change. Biogeochemistry 63:73–83.CrossRefGoogle Scholar
  108. West, T.O. and Post, W.M. (2002). Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Science Society of America Journal 66:1930–1946.CrossRefGoogle Scholar
  109. Zdruli, P., Jones, R. and Montanarella, L. (1999). Organic Matter in the Soils in Southern Europe, Expert Report prepared for DG XI.E.3 by the European Soil Bureau.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.CRA-ABP, Centro di ricerca per l’agrobiologia e la pedologiaFirenzeItalia
  2. 2.CRA-ABP, Research Centre for Agrobiology and PedologyFlorenceItaly

Personalised recommendations