Thiocyanato Bridged Heterodinuclear Complex [Cu(bpy)2(µ-NCS)Ru(bpy)2(NO3)](PF6)2 and Its Binding with Cd(II), Hg(II), Pb(II) and Ag(I) Ions

  • Niraj Kumari
  • Mudit Dixit
  • Herbert W. Roesky
  • Lallan Mishra
Chapter

Abstract

The precursor complexes of composition [Cu(bpy)2(H2O)](PF6)2 1 and [Cu(bpy)2(NCS)](PF6) 2 (bpy = 2,2′-bipyridine) were initially prepared and characterized using spectroscopic (IR, UV-vis, ESR, Emission) along with their mass, elemental analysis, and single crystal X-ray crystallographic data. Complex 2 is linked with a known complex Ru(bpy)2(NO3)2 prepared in situ. The resulting heterobimetallic complex of composition [Cu(bpy)2(μ-NCS)Ru(bpy)2(NO3)](PF6)2 3 was isolated and characterized by its spectroscopic, mass, and elemental analysis data and its geometry is optimized without any constraint with plane-wave ab initio density functional theory using solid state package Abinit. The emission and electrochemical properties of these complexes are studied. The multiresponsive chemosensor property of complex 3 for Hg(II) ions as compared to Cd(II), Pb(II) and Ag(I) ions is monitored using UV-vis and fluorescence titrations.

Keywords

Polypyridyl Complex Tetrabutyl Ammonium Perchlorate Bipyridine Ligand Trigonal Bipyramidal Geometry Heterobimetallic Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors thank authorities of CDRI Lucknow, India for providing analytical data. Authors (NK&LM) acknowledge the authorities of UGC and CSIR, New Delhi, India for the financial assistance.

References

  1. 1.
    Martinez R, Espinosa A, Tárraga A, Molina P (2005) New Hg2+ and Cu2+ selective chromo- and fluoroionophore based on a bichromophoric azine. Org Lett 7(26):5869–5872CrossRefGoogle Scholar
  2. 2.
    Moon SY, Cha NR, Kim YH, Chang S-K (2004) New Hg2+ selective chromo- and fluoroionophore based upon 8-hydroxyquinoline. J Org Chem 69:181–183CrossRefGoogle Scholar
  3. 3.
    Yang Y-K, Yook K-J, Tae J (2005) A Rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J Am Chem Soc 127:16760–16761CrossRefGoogle Scholar
  4. 4.
    Palomares E, Vilar R, Durrant JR (2004) Heterogeneous colorimetric sensor for mercuric salts. Chem Commun 10:362–363CrossRefGoogle Scholar
  5. 5.
    Li X-H, Liu Z-Q, Li F-Y, Duan X-F, Huang C-H (2007) Synthesis of N, N, N-4,4″-di-(4-methylphenyl)-2,2′:6′,2″-terpyridine-N, N, N-tris(isothiocyanato)ruthenium(II) and application to colorimetric Hg2+ sensor. Chin J Chem 25:186–189CrossRefGoogle Scholar
  6. 6.
    Sullivan BP, Salmon DJ, Meyer TJ (1978) Mixed phosphine 2,2′-bipyridine complexes of ruthenium. Inorg Chem 17:3334–3341CrossRefGoogle Scholar
  7. 7.
    Sen S, Mitra S, Kundu P, Saha MK, Krueger C, Bruckmann J (1997) Synthesis, characterization and structural studies of mono- and polynuclear complexes of zinc(II) with 1,10-phenanthroline, 2,2′-bipyridine and 4,4′-bipyridine. Polyhedron 16:2475–2481CrossRefGoogle Scholar
  8. 8.
    Yi S, Toms BB, Dixit N, Kumari N, Mishra L, Goodisman J, Dabrowiak JC (2010) Cytotoxicity studies on Cu(II) and Zn(II) 2,2′-bipyridyl complexes as a function of recovery time. Chem Res Toxicol 23:1417–1426CrossRefGoogle Scholar
  9. 9.
    Sheldrick GM (1997) SHELXS-97 Program for the Solution of Crystal Structures, University of Goettingen, Goettingen, GermanyGoogle Scholar
  10. 10.
    Sheldrick GM (1990) Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr A 46:467–473CrossRefGoogle Scholar
  11. 11.
    Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R (2002) MERCURY, new software for searching the Cambridge structural database and visualizing crystal structures. Acta Crystallogr B 58:389–397CrossRefGoogle Scholar
  12. 12.
    Spek AL (2003) Single-crystal structure validation with the program PLATON. J Appl Crystallogr 36:7–13CrossRefGoogle Scholar
  13. 13.
    Albada GAV, DeDraaff RAG, Haasnoot GA, Reedjik J (1984) Synthesis, spectroscopic characterization, and magnetic properties of unusual 3,5-dialkyl-1,2,4-triazole compounds containing N-bridging isothiocyanato ligands. X-ray structure of trinuclear bis [(mu-thiocyanato-N)bis(mu-3,5-diethyl-1,2,4-triazoleN1,N2)bis(thiocyanato-N)(3,5-diethyl-1,2,4-triazole-N1)nickel(II)-N,N1,N1′]nickel(II) dihydrate. I. Inorg Chem 23:1404–1408CrossRefGoogle Scholar
  14. 14.
    Shen L, Xu Y-Z (2001) Structure and magnetic properties of a novel two-dimensional thiocyanato-bridged heterometallic polymer {Cu(en)2[Ni(en)(SCN)3]2}n. J Chem Soc Dalton Trans :3413–3414Google Scholar
  15. 15.
    Ranjan S, Dikshit SK (1998) Synthesis, spectroscopic, photophysical and electrochemical properties of cyano-bridged copper(I)-ruthenium(II) complexes. Polyhedron 17:3071–3082CrossRefGoogle Scholar
  16. 16.
    Potocnak I, Dunaj-Jurco M, Miklos D, Jager L (2001) Crystal structure of bis-(2,2′-bipyridine-N, N′)-(dicyanamide-N)-copper(II) tricyanomethanide. Electronic and structural parameters describing the shape of coordination polyhedra in five-coordinated copper(II) compounds. Monatshefte fur Chemie 132:315–327Google Scholar
  17. 17.
    Carballo R, Castineiras A, Balboa S, Covelo B, Niclos J (2002) Solid state coordination chemistry of copper(II)/α-hydroxycarboxylato/2,2′-bipyridine systems. Polyhedron 21: 2811–2818CrossRefGoogle Scholar
  18. 18.
    Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic, New YorkGoogle Scholar
  19. 19.
    Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty JY, Allan DC (2002) First-principles computation of material properties: the ABINIT software project. Comput Mater Sci 25(3):478–492CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Pan W, Yang W (1997) Describing van der waals interaction in diatomic molecules with generalized gradient approximations: The role of the exchange functional. J Chem Phys 107:7921–7925CrossRefGoogle Scholar
  21. 21.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  22. 22.
    Bencini A, Gatteschi D (1977) Single-crystal polarized electronic and electron spin resonance spectra of the trigonal-bipyramidal complex aquobis(1,10-phenanthroline)copper(II) nitrate. Inorg Chem 16:1994–1997CrossRefGoogle Scholar
  23. 23.
    Bhat IU, Tabassum S (2009) Synthesis of new piperazine derived Cu(II)/Zn(II) metal complexes, their DNA binding studies, electrochemistry and anti-microbial activity: validation for specific recognition of Zn(II) complex to DNA helix by interaction with thymine base. Spectrochim Acta A 72:1026–1033CrossRefGoogle Scholar
  24. 24.
    Ghosh BK, Chakravorty A (1989) Electrochemical studies of ruthenium compounds Part I. Ligand oxidation levels. Coord Chem Rev 95:239–294CrossRefGoogle Scholar
  25. 25.
    Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interact ion of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707CrossRefGoogle Scholar
  26. 26.
    Song KC, Kim JS, Park SM, Chung KC, Ahn S, Chang SK (2006) Fluorogenic Hg2+ selective chemodosimeter derived from 8-hydroxyquinoline. Org Lett 8:3413–3416CrossRefGoogle Scholar
  27. 27.
    Mello JV, Finney NS (2005) Reversing the discovery paradigm: a new approach to the combinatorial discovery of fluorescent chemosensors. J Am Chem Soc 127:10124–10125CrossRefGoogle Scholar
  28. 28.
    Varnes AW, Dodson RB, Wehry EL (1972) Interactions of transition-metal ions with photoexcited states of flavines. Fluorescence quenching studies. J Am Chem Soc 94:946–950CrossRefGoogle Scholar
  29. 29.
    Ha-Thi M-H, Penhoat M, Michelet V, Leray I (2007) Highly selective and sensitive phosphane sulfide derivative for the detection of Hg2+ in an organoaqueous medium. Org Lett 9: 1133–1136CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Niraj Kumari
    • 1
  • Mudit Dixit
    • 2
  • Herbert W. Roesky
    • 3
  • Lallan Mishra
    • 1
  1. 1.Department of ChemistryBanaras Hindu UniversityVaranasiIndia
  2. 2.Electronic Structure and Theory GroupNational Chemical LaboratoryPuneIndia
  3. 3.Institute of Inorganic ChemistryGoettingen UniversityGoettingenGermany

Personalised recommendations