Advertisement

Taphonomy pp 249-285 | Cite as

The Relationship Between Continental Landscape Evolution and the Plant-Fossil Record: Long Term Hydrologic Controls on Preservation

  • Robert A. GastaldoEmail author
  • Timothy M. Demko
Chapter
Part of the Aims & Scope Topics in Geobiology Book Series book series (TGBI, volume 32)

Abstract

Continental depositional environments preserve the majority of the macrofloral record since the advent of land-plant colonization in the mid-Paleozoic, and wetland representatives are encountered more commonly than those that grew under more seasonal conditions. It has been assumed that preservation potential and future recovery of plant debris are high once detritus is introduced into any appropriate environment of deposition (e.g., fluvial-lacustrine or paludal setting), regardless of prevailing associated climate, sediment load, or geochemistry at the time of emplacement or interval thereafter. If a plant fossil is identified in any part of a stratigraphic interval, even if it occurs solely as an impression, it has been presumed that favorable conditions persisted over time to facilitate this record. Conversely, the absence of fossil plants in a stratigraphic sequence commonly has been interpreted as the result of catastrophic perturbation across the landscape, rather than the ascribing their absence to taphonomic filters that may have operated millennia after burial. Terrestrial landscapes are affected by aggradational, equilibrium, and degradational processes that control not only the local or regional water table, but also the long-term fossilization potential of organic debris entombed within these sediments. Fossil plants have the highest preservation potential when high water tables are maintained long-term within soils (e.g., histosols, entisols, gleyed soils), or in settings that are maintained below the maximum draw down of the regional water table (e.g., channel barforms, abandoned channels, lakes) of aggradational landscapes. When landscapes reach equilibrium, extensive pedogenesis ensues and the development of deep mature soils (e.g., calcisols) results in the bacterial degradation of any previously buried plant debris due to extreme penetration of atmospheric gases. When sediment is removed during landscape degradation, the local and/or regional water table is reset lower in the unconsolidated stratigraphy, once again promoting rapid decay of previously buried detritus at depth. These processes, operating under time frames of centuries to millennia and longer (lakh), control the ultimate preservational mode of plants recovered from the fossil record.

This chapter reviews the factors influencing the preservation of terrestrial plants in both subaqueous and subaerial environments based on actualistic studies, and develops a conceptual framework for landscape evolution in continental regimes. A model is presented in which preservational mode is related to the taphonomic and sedimentary history of the landscape in which plant detritus is buried. Case studies of the plant-fossil record, ranging from the Triassic to the Eocene, in exclusively aggradational and in aggradational/degradational landscapes are presented.

Keywords

Carbonaceous Shale Coarse Woody Debris Late Eocene Plant Assemblage Fossil Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Support for RAG includes: a Forschungspreis from the Alexander von Humboldt Foundation for studies in the Weißelster basin, Germany; NSF EAR 0417317 and a Mellon Foundation grant to Colby, Bates, and Bowdoin Colleges for research efforts in the Karoo Basin, South Africa; and NSF EAR, ACS PRF, NATO, and other agencies for plant-taphonomic investigations in the southeastern U.S., Kalimantan, Indonesia, Sarawak, Malaysia, and central Europe. Support for TMD includes: NSF EAR 9305087, USGS-NPS Interagency Agreement 1443-IA-1200-94-003, Chevron, Colorado State University, and the University of Minnesota Duluth.

References

  1. Alexander, J., Fielding, C. R., & Jenkins, G. (1999). Plant-material deposition in the tropical Burdekin River, Australia; implications for ancient fluvial sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 153, 105–125.Google Scholar
  2. Allen, J. P., & Gastaldo, R. A. (2006). Sedimentology and taphonomy of the Early to Middle Devonian plant-bearing beds of the Trout Valley Formation, Maine. In W. A. DiMichele & S. Greb (Eds.), Wetlands through time: Geological Society of America, Special Publication 399 (pp. 57–78).Google Scholar
  3. Allison, P. A., & Pye, K. (1994). Early diagenetic mineralization and fossil preservation in modern carbonate concretions. Palaios, 9, 561–575.Google Scholar
  4. Atchley, S. C., Nordt, L. C., & Dworkin, S. I. (2004). Eustatic control on alluvial sequence stratigraphy: A possible example from the Cretaceous-tertiary transition of the Tornillo Basin, Big Bend National Park, West Texas, USA. Journal of Sedimentary Research, 74, 391–404.Google Scholar
  5. Ash, S. R. (1970). Ferns from the Chinle Formation (Upper Triassic) in the Fort Wingate area. New Mexico: US Geological Survey Professional Paper, 613D, 1–40.Google Scholar
  6. Ash, S. R. (1972). Plant megafossils of the Chinle Formation. In C. S. Breed & W. J. Breed (Eds.), Investigations of the Triassic Chinle Formation: Museum of Northern Arizona Bulletin, 47 (pp. 23–43).Google Scholar
  7. Ash, S. R. (1980). Upper Triassic floral zones of North America. In D. L. Dilcher & T. M. Taylor (Eds.), Biostratigraphy of fossil plants (pp. 153–170). Stroudsburg: Dowden, Hutchinson, Ross.Google Scholar
  8. Ash, S. R. (1987). The Upper Triassic red bed flora of the Colorado Plateau, western United States. Journal of the Arizona-Nevada Academy of Sciences, 22, 95–105.Google Scholar
  9. Ash, S. R. (1991). A new pinnate cycad leaf from the Upper Triassic Chinle Formation of Arizona. Botanical Gazette, 152, 123–131.Google Scholar
  10. Ash, S. R. (2001). New cycadophytes from the Upper Triassic Chinle Formation of the southwestern United States. PaleoBios, 21, 15–28.Google Scholar
  11. Ash, S. R., & Creber, G. T. (2000). The Late Triassic Araucarioxylon arizonicum trees of the Petrified Forest National Park, Arizona, USA. Palaeontology, 43, 15–28.Google Scholar
  12. Baldwin, C. T., Strother, P. K., Beck, J. H., & Rose, E. (2004). Palaeoecology of the Bright Angel Shale in the eastern Grand Canyon, Arizona, USA, incorporating sedimentological, ichnological and palynological data. Geological Society Special Publications, 228, 213–236.Google Scholar
  13. Beraldi-Campsei, H., Cevallos-Ferriz, S. R. S., Centeno-García, E., Arenas-Abad, C., & Fernández, L. P. (2006). Sedimentology and paleoecology of an Eocene-Oligocene alluvial-lacustrine arid system, Southern Mexico. Sedimentary Geology, 191, 227–254.Google Scholar
  14. Blum, M. D., & Törnqvist, T. E. (2000). Fluvial responses to climate and sea-level change: A review and look forward. Sedimentology, 47, 2–48.Google Scholar
  15. Boyd, R. C., DiEssel, C., Wadsworth, J. A., Leckie, D. A., & Zaitlin, B. A. (2000). Developing a model for non-marine sequence stratigraphy – Application to the western Canada sedimentary basin (abstract): GeoCanada 2000 Conference Abstracts, CD-ROM (p. 4).Google Scholar
  16. Bray, J. R., & Gorham, E. (1964). Litter production in forests of the world. In J. B. Cragg (Ed.), Advances in ecological research. New York: Academic (Vol. 2, pp. 101–157).Google Scholar
  17. Bull, W. B. (1991). Geomorphic responses to climatic change. Oxford, UK: Oxford University Press. 326 p.Google Scholar
  18. Burnham, R. J. (1993). Time resolution in terrestrial macrofloras: Guidelines from modern accumulations: Short courses in paleontology. Paleontological Society, 6, 57–78.Google Scholar
  19. Burnham, R. J., & Spicer, R. A. (1986). Forest litter preserved by volcanic activity at El Chichon, Mexico: A potentially accurate record of the pre-eruption vegetation. Palaios, 1, 158–161.Google Scholar
  20. Cecil, C. B., & Dulong, F. T. (2003). Precipitation models for sediment supply in warm climates. In C. B. Cecil & N. T. Edgar (Eds.), Climate controls on stratigraphy, SEPM Special Publication 77 (pp. 21–27).Google Scholar
  21. Creber, G. T., & Ash, S. R. (2004). The Late Triassic Schilderia adamanica and Woodworthia arizonica trees of the Petrified Forest National Park, Arizona, USA. Palaeontology, 147, 21–38.Google Scholar
  22. Daugherty, L. H. (1941). The Upper Triassic flora of Arizona: Carnegie Institute of Washington Publication 526 (108 p.)Google Scholar
  23. Davies-Vollum, K. S., & Kraus, M. J. (2001). A relationship between alluvial backswamps and avulsion cycles: An example from the Willwood Formation of the Bighorn Basin. Wyoming: Sedimentary Geology, 140, 235–249.Google Scholar
  24. Davies-Vollum, K. S., & Wing, S. L. (1998). Sedimentological, taphonomic, and climatic aspects of Eocene swamp deposits (Willwood Formation, Bighorn Basin, Wyoming). Palaios, 13, 28–40.Google Scholar
  25. DeCelles, P. G. (2004). Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA. American Journal of Science, 304, 105–168.Google Scholar
  26. Demko, T. M. (1995a). Taphonomy of fossil plants in Petrified Forest National Park, Arizona. In Fossils of Arizona: Proceedings, 1995 Southwest Palaeontological Society and Mesa Southwest Museum Mesa, Arizona (pp. 37–52).Google Scholar
  27. Demko, T. M. (1995b). Taphonomy of fossil plants in the Upper Triassic Chinle Formation: Ph.D. dissertation. Tucson: University of Arizona. 274 p.Google Scholar
  28. Demko, T. M., & Parrish, J. T. (1998). Paleoclimatic setting of the Upper Jurassic Morrison Formation. Modern Geology, 22, 283–296.Google Scholar
  29. Demko, T. M., Dubiel, R. F., & Parrish, J. T. (1998). Plant taphonomy in incised valleys: Implications for interpreting paleoclimate from fossil plants. Geology, 26, 1119–1122.Google Scholar
  30. Demko, T. M., Currie, B. S., & Nicoll, K. A. (2004). Regional paleoclimatic and stratigraphic implications of paleosols and fluvial-overbank architecture in the Morrison Formation (Upper Jurassic), Western Interior, USA. Sedimentary Geology, 167, 117–137.Google Scholar
  31. DiMichele, W. A., & Gastaldo, R. A. (2008). Deep time plant paleoecology. Annals of the Missouri Botanical Gardens, 95, 144–198.Google Scholar
  32. Drum, R. W. (1968). Silicification of Betula wood tissue in vitro. Science, 161, 175–176.Google Scholar
  33. Dubiel, R. F. (1994). Triassic deposystems, paleogeography, and paleoclimate of the Western Interior. In M. V. Caputo, J. A. Peterson, & K. J. Franczyk (Eds.), Mesozoic systems of the rocky mountain region, USA: SEPM Rocky Mountain Section, Denver, CO (pp. 133–168). Tulsa, Oklahoma: SEPM.Google Scholar
  34. Dubiel, R. F., Parrish, J. T., Parrish, J. M., & Good, S. C. (1991). The Pangaean megamonsoon – Evidence from the Upper Triassic Chinle Formation, Colorado Plateau. Palaios, 6, 347–370.Google Scholar
  35. Dunagan, S. P., & Turner, C. E. (2004). Regional paleohydrologic and paleoclimatic settings of wetland/lacustrine depositional systems in the Morrison Formation (Upper Jurassic), Western Interior, USA. Sedimentary Geology, 167, 269–296.Google Scholar
  36. Dunn, K. A., McLean, R. J. C., Upchurch, G. R., Jr., & Folk, R. L. (1997). Enhancement of leaf fossilization potential by bacterial films. Geology, 25, 1119–1122.Google Scholar
  37. Edwards, D., & Feehan, J. (1980). Records of Cooksonia-type sporangia from late Wenlock strata in Ireland. Nature, 287, 41–42.Google Scholar
  38. Eissmann, L. (1970). Geologie des Bezirkes Leipzig. Natura Regionis Lipsiensis, 1/2, 1–172.Google Scholar
  39. Engelmann, G. F., Chure, D. J., & Fiorillo, A. R. (2004). The implications of a dry climate for the paleoecology of the fauna of the Upper Jurassic Morrison Formation. Sedimentary Geology, 167, 297–308.Google Scholar
  40. Etheridge, F. G., Wood, L. J., & Schumm, S. A. (1998). Cyclic variables controlling fluvial sequence development: Problems and perspectives. In K. W. Shanley & P. J. McCabe (Eds.), Relative role of eustacy, climate and tectonism in continental rocks: SEPM Special Publication 59 (pp. 17–29)Google Scholar
  41. Fairon-Demaret, M., & Scheckler, S. E. (1987). Typification and redescription of Moresnetia zalesskyi Stockmans, 1948, an early seed plant from the upper Famennian of Belgium: Bulletin de l’Institut Royal des Sciences Naturelles de Belgique. Sciences de la Terre, 57, 183–199.Google Scholar
  42. Fielding, C. R., Alexander, J., & Newman-Sutherland, E. (1997). Preservation of in situ, arborescent vegetation and fluvial bar construction in the Burdekin River of North Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 135, 123–144.Google Scholar
  43. Fritz, W. J. (1980). Reinterpretation of the depositional environment of the Yellowstone “fossil forests”. Geology, 8, 309–313.Google Scholar
  44. Fritz, W. J., & Harrison, S. (1985). Transported trees from the 1982 Mount St. Helens sediment flows: Their use as paleo-current indicators. Sedimentary Geology, 42, 49–64.Google Scholar
  45. Gastaldo, R. A. (1989). Preliminary observations on phytotaphonomic assemblages in a subtropical/temperate Holocene bayhead delta: Mobile Delta, Gulf Coastal Plain, Alabama. Review of Palaeobotany and Palynology, 58, 61–84.Google Scholar
  46. Gastaldo, R. A. (1992). Taphonomic considerations for plant evolutionary investigations. The Palaeobotanist, 41, 211–223.Google Scholar
  47. Gastaldo, R. A. (1994). The genesis and sedimentation of phytoclasts with examples from coastal environments. In A. Traverse (Ed.), Sedimentation of organic particles (pp. 103–127). Cambridge: Cambridge University Press.Google Scholar
  48. Gastaldo, R. A. (2004). The relationship between bedform and log orientation in a Paleogene fluvial channel, Weißelster basin, Germany: Implications for the use of coarse woody debris for paleocurrent analysis. Palaios, 19, 595–606.Google Scholar
  49. Gastaldo, R. A. (2010). Peat or No Peat: Why do the Rajang and Mahakam Deltas Differ?: International Journal of Coal Geology, v. **, p. ***-*** (doi; 10.1016/j.coal.2010.01.005)Google Scholar
  50. Gastaldo, R. A., & Degges, C. W. (2007). Sedimentology and paleontology of a carboniferous Log Jam. International Journal of Coal Geology, 69, 103–118.Google Scholar
  51. Gastaldo, R. A., & Huc, A. Y. (1992). Sediment facies, depositional environments, and distribution of phytoclasts in the Recent Mahakam River delta, Kalimantan, Indonesia. Palaios, 7, 574–591.Google Scholar
  52. Gastaldo, R. A., & Rolerson, M. W. (2008). Katbergia gen. nov., a New Trace Fossil from the Late Permian and Early Triassic of the Karoo Basin: Implications for paleoenvironmental conditions at the P/Tr extinction event. Palaeontology, 51, 215–229.Google Scholar
  53. Gastaldo, R. A., & Staub, J. R. (1999). A Mechanism to explain the preservation of leaf litters lenses in coals derived from raised mires. Palaeogeography, Palaeoclimatology, Palaeoecology, 149, 1–14.Google Scholar
  54. Gastaldo, R. A., Douglass, D. P., & McCarroll, S. M. (1987). Origin, characteristics and provenance of plant macrodetritus in a Holocene crevasse splay, mobile delta, Alabama. Palaios, 2, 229–240.Google Scholar
  55. Gastaldo, R. A., Bearce, S. C., Degges, C., Hunt, R. J., Peebles, M. W., & Violette, D. L. (1989). Biostratinomy of a Holocene oxbow lake: A backswamp to mid-channel transect. Review of Palaeobotany and Palynology, 58, 47–60.Google Scholar
  56. Gastaldo, R. A., Allen, G. P., & Huc, A. Y. (1995). The tidal character of fluvial sediments of the Recent Mahakam River delta, Kalimantan, Indonesia. Special Publications International Association of Sedimentologists, 24, 171–181.Google Scholar
  57. Gastaldo, R. A., Feng, W., & Staub, J. R. (1996). Palynofacies patterns in channel deposits of the Rajang River and delta, Sarawak, East Malaysia. PALAIOS, 11, 266–279.Google Scholar
  58. Gastaldo, R. A., Walther, H., Rabold, J., & Ferguson, D. (1996). Criteria to distinguish parautochthonous leaves in cenophytic alluvial channel-fills. Review of Palaeobotany and Palynology, 91, 1–21.Google Scholar
  59. Gastaldo, R. A., Riegel, W., Püttmann, W., Linnemann, U. H., & Zetter, R. (1998). A multidisciplinary approach to reconstruct the Late Oligocene vegetation in central Europe. Review of Palaeobotany and Palynology, 101, 71–94.Google Scholar
  60. Gastaldo, R. A., Adendorff, R., Bamford, M. K., Labandeira, Neveling, J., & Sims, H. J. (2005). Taphonomic trends of macrofloral assemblages across the Permian-Triassic boundary, Karoo Basin, South Africa. Palaios, 20, 478–497.Google Scholar
  61. Gastaldo, R. A., Purkyňová, E., Šimůnek, Z., & Schmitz, M. D. (2009). Ecological persistence in the Late Mississippian (Serpukhovian – Namurian A) Megafloral Record of the Upper Silesian Basin, Czech Republic. Palaios, 24, 336–350.Google Scholar
  62. Gee, C. T. (2005). The genesis of mass carpological deposits (bedload carpodeposits) in the Tertiary of the Lower Rhine Basin, Germany. Palaios, 20, 464–479.Google Scholar
  63. Gee, C. T., Abraham, M., & Sander, P. M. (1997). The occurrence of carpofloras in coarse sand fluvial deposits: Comparison of fossil and recent case studies. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 58, 171–178.Google Scholar
  64. Gensel, P. G., & Edwards, D. (2001). Plants invade the land: Evolutionary and environmental perspectives. New York: Columbia University Press. 304 p.Google Scholar
  65. Glasspool, I. J., Edwards, D., & Axe, L. (2004). Charcoal in the Silurian as evidence for the earliest wildfire. Geology, 32, 381–383.Google Scholar
  66. Greb, S. F., DiMichele, W. D., & Gastaldo, R. A. (2006). Evolution of wetland types and the importance of wetlands in earth history. In W. A. DiMichele & S. Greb (Eds.), Wetlands through time, Geological Society of America, Special Publication, 399 (pp. 1–40).Google Scholar
  67. Grimes, S. T., Brock, F., Richard, D., Davies, K. L., Edwards, D., Briggs, D. E. G., et al. (2001). Understanding fossilization: Experimental pyritization of plants. Geology, 29, 123–126.Google Scholar
  68. Gupta, N. S., & Pancost, R. D. (2004). Biomolecular and physical taphonomy of angiosperm leaf during early decay: Implications for fossilization. Palaios, 19, 428–440.Google Scholar
  69. Halfar, J., Riegel, W., & Walther, H. (1998). Facies architecture and sedimentology of a meandering fluvial system: A Palaeogene example from the Weisselster Basin, Germany. Sedimentology, 45, 1–17.Google Scholar
  70. Hasiotis, S. T. (2004). Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: Paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sedimentary Geology, 167, 177–268.Google Scholar
  71. Hasiotis, S. T., & Mitchell, C. E. (1993). A comparison of crayfish burrow morphologies; Triassic and Holocene fossil, paleo- and neo-ichnological evidence, and the identification of their burrows signatures. Ichnos, 2, 291–314.Google Scholar
  72. Hiller, N., & Stravrakis, N. (1984). Permo-Triassic fluvial systems in the Southeastern Karoo basin, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 45, 1–21.Google Scholar
  73. Jacobs, B. F., Tabor, N., Feseha, M., Pan, A., Kappelman, J., Rasmussen, T., et al. (2005). Oligocene terrestrial strata of northwestern Ethiopia: A preliminary report on paleoenvironments and paleontology. Palaeontologia Electronica, 8(1), 19.Google Scholar
  74. Johnson, M. R., Van Vuuren, C. J., Visser, J. N. J., Cole, D. I., Wickens, H., Christie, A. D. M., et al. (1997). The Foreland Karoo Basin, South Africa. In R. C. Selley (Ed.), Sedimentary basins of the world (pp. 169–185). New York: Elsevier.Google Scholar
  75. Krasilov, A. (1975). Paleoecology of terrestrial plants: Basic principles and techniques. New York: Wiley. 283 p.Google Scholar
  76. Kraus, M. J. (1996). Avulsion deposits in lower Eocene alluvial rocks, Bighorn Basin, Wyoming. Journal of Sedimentary Research, 66, 354–363.Google Scholar
  77. Kraus, M. J. (2001). Sedimentology and depositional setting of the Willwood Formation in the Bighorn and Clark’s Fork basins. In P. D. Gingerich (Ed.), Paleocene-Eocene stratigraphy and biotic change in the Bighorn and Clarks Fork basins, Wyoming: Papers on Paleontology, 33 (pp. 15–28).Google Scholar
  78. Kraus, M. J. (2002). Basin-scale changes in floodplain paleosols: Implications for interpreting alluvial architecture. Journal of Sedimentary Research, 72, 500–509.Google Scholar
  79. Kraus, M. J., & Davies-Vollum, K. S. (2004). Mudrock-dominated fills formed in avulsion splay channels: Examples from the Willwood Formation, Wyoming. Sedimentology, 51, 1127–1144.Google Scholar
  80. Kraus, M. J., & Gwinn, B. M. (1997). Facies and facies architecture of Paleogene floodplain deposits, Willwood Formation, Bighorn Basin, Wyoming, USA. Sedimentary Geology, 114, 33–54.Google Scholar
  81. Kraus, M. J., & Hasiotis, S. T. (2006). Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: Examples from Paleogene paleosols, Bighorn Basin, Wyoming, USA. Journal of Sedimentary Research, 76, 633–646.Google Scholar
  82. Krutzsch, W. (1992). Paläobotanische Klimagliederung des Alttertiärs (Mitteleozän bis Oberoligozän) in Mitteldeutschland und das Problem der Verknüpfung mariner und kontinentaler Gliederungen (klassische Biostratigraphien-paläobotanisch-ökologische Klimastratigraphie-Evolutionsstratigraphie der Vertebraten. Neues Jahrbuch für Geologische und Paläontologische Abandelung, 186, 137–153.Google Scholar
  83. Lawton, T. F. (1994). Tectonic setting of Mesozoic sedimentary basins, Rocky Mountain region, United States. In M. V. Caputo, J. A. Peterson, & K. J. Franczyk (Eds.), Mesozoic systems of the Rocky Mountain Region, USA: SEPM Rocky Mountain Section, Denver, CO (pp. 1–25). Tulsa, Oklahoma: SEPM.Google Scholar
  84. Machin, J. J. (1948). Concept of the graded river. Bulletin of the Geological Society of America, 59, 463–512.Google Scholar
  85. Mamay, S. H. (1992). Sphenopteridium and Telangiopsis in a Diplopteridium-like Association from the Virgilian (Upper Pennsylvanian) of New Mexico. American Journal of Botany, 79, 1092–1101.Google Scholar
  86. McCarthy, P. J., & Plint, A. G. (1998). Recognition of interfluve sequence boundaries: Integrating paleopedology and sequence stratigraphy. Geology, 26, 387–390.Google Scholar
  87. McCarthy, P. J., & Plint, A. G. (2003). Spatial variability of palaeosols across Cretaceous interfluves in the Dunvegan Formation, NE British Columbia, Canada: Palaeohydrological, palaeogeomorphological and stratigraphic implications. Sedimentology, 50, 1187–1220.Google Scholar
  88. Meyer-Berthaud, B., Scheckler, S. E., & Wendt, J. (1999). Archaeopteris is the earliest known modern Tree. Nature, 398, 700–701.Google Scholar
  89. Miall, A. D. (1991). Stratigraphic sequences and their chronostratigraphic correlation. Journal of Sedimentary Petrology, 61, 497–505.Google Scholar
  90. Mitchum, Jr., R. M., Vail, P. R., & Thompson III, S. (1977). Seismic stratigraphy and global changes of sea level, part 2: The depositional sequence as a basic unit for stratigraphic analysis. In C. E. Payton (Ed.), Seismic stratigraphy – Applications to hydrocarbon exploration: AAPG Memoir 26 (pp. 53–62).Google Scholar
  91. Mosbrugger, V., Utescher, T., & Dilcher, D. L. (2005). Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences of the United States of America, 102(42), 14964–14969.Google Scholar
  92. Muto, T., & Steel, R. J. (2000). The accommodation concept in sequence stratigraphy: Some dimensional problems and possible redefinition. Sedimentary Geology, 130, 1–10.Google Scholar
  93. Opluštil, S., Pšenička, J., Libertín, M., & Šimůnek, Z. (2007). Vegetation patterns of Westphalian and Lower Stephanian mire assemblages preserved in tuff beds of the continental basins of Czech Republic. Review of Palaeobotany and Palynology, 143, 107–154.Google Scholar
  94. Pace, D. W., Gastaldo, R. A., & Neveling, J. (2009). Aggradational and Degradational Landscapes in the Early Triassic of the Karoo Basin and Evidence for Dramatic Climate Shifts Following the P/Tr Event: Journal of Sedimentary Research, 79, 276–291.Google Scholar
  95. Parrish, J. T., Peterson, F., & Turner, C. E. (2004). Jurassic “savannah” – Plant taphonomy and climate of the Morrison Formation (Upper Jurassic, Western USA). Sedimentary Geology, 167, 137–162.Google Scholar
  96. Perry, D. A. (1994). Forest ecosystems. Baltimore: The Johns Hopkins University Press. 649 p.Google Scholar
  97. Plint, A. G., McCarthy, P. J., & Faccini, U. F. (2001). Nonmarine sequence stratigraphy: Updip expression of sequence boundaries and systems tracts in a high-resolution framework, Cenomanian Dunvegan Formation, Alberta foreland basin, Canada. AAPG Bulletin, 85, 1967–2001.Google Scholar
  98. Posamentier, H. W., & Allen, G. P. (1999). Siliciclastic sequence stratigraphy – Concepts and applications: SEPM Concepts in Sedimentology and Paleontology 6 (210 p.).Google Scholar
  99. Posamentier, H. W., & Vail, P. R. (1988). Eustatic controls on clastic deposition. II. Sequence and system tract models. In C. K. Wilgus, B. S. Hastings, C. G. St. C. Kendall, H. W. Posamentier, C. A. Ross, & J. C. Van Wagoner (Eds.), Sea-level changes: An integrated approach: SEPM Special Publication 42 (pp. 125–154).Google Scholar
  100. Pratt, L. M., Phillips, T. L., & Dennison, J. M. (1978). Evidence of non-vascular land plants from the Early Silurian (Llandoverian) of Virginia, USA. Review of Palaeobotany and Palynology, 25, 121–149.Google Scholar
  101. Quirk, D. G. (1996). ‘Base profile’: A unifying concept in alluvial sequence stratigraphy. In J. A. Howell & J. F. Aitken (Eds.), High resolution sequence stratigraphy: Innovations and applications: Geological Society of America Special Publication, 104 (pp. 37–49).Google Scholar
  102. Retallack, G. J. (2001). Soils of the past: An introduction to paleopedology. Malden, MA: Blackwell. 404 p.Google Scholar
  103. Retallack, G. J., Smith, R. M. H., & Ward, P. D. (2003). Vertebrate extinction across Permian-Triassic boundary in Karoo Basin, South Africa. Geological Society of America Bulletin, 115, 1133–1152.Google Scholar
  104. Rex, G. M., & Chaloner, W. G. (1983). The experimental formation of plant compression fossils. Palaeontology, 26, 231–252.Google Scholar
  105. Rickards, R. B. (2000). The age of the earliest club mosses: The Silurian Baragwanathia flora in Victoria, Australia. Geological Magazine, 137, 207–209.Google Scholar
  106. Rothwell, G. W., Scheckler, S. E., & Gillespie, W. H. (1989). Elkinsia gen. no, a late Devonian gymnosperm with cupulate ovules. Botanical Gazette, 150, 170–189.Google Scholar
  107. Runkle, D. R. (1985). Hydrology of the alluvial, buried channel, basal Pleistocene and Dakota aquifers in west-central Iowa: USGS Water-Resources Investigations Report 85–4239, 111 p.Google Scholar
  108. Scheihing, M. H., & Pfefferkorn, H. W. (1984). The taphonomy of land plants in the Orinoco Delta: A model for the incorporation of plant parts in clastic sediments of Late Carboniferous age of Euramerica. Review of Palaeobotany and Palynology, 41, 205–240.Google Scholar
  109. Schopf, J. M. (1975). Modes of fossil preservation. Review of Palaeobotany and Palynology, 20, 27–53.Google Scholar
  110. Schumm, S. A. (1993). River response to baselevel change: Implications for sequence stratigraphy. The Journal of Geology, 101, 279–294.Google Scholar
  111. Scott, A. C. (2000). The pre-quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology, 164, 281–329.Google Scholar
  112. Scott, A. C., & Glasspool, I. J. (2005). Charcoal reflectance as aproxy for the emplacement temperature of pyroclastic flow deposits. Geology, 33, 589–592.Google Scholar
  113. Sellwood, B. W., & Price, G. D. (1993). Sedimentary facies as indicators of Mesozoic palaeoclimate. Philosophical Transactions: Biological Sciences, 341, 225–233.Google Scholar
  114. Shanley, K. W., & McCabe, P. J. (1991). Predicting facies architecture through sequence stratigraphy – An example from the Kaiparowits Plateau, Utah. Geology, 19, 742–745.Google Scholar
  115. Shanley, K. W., & McCabe, P. J. (1994). Perspectives on the sequence stratigraphy of continental strata. AAPG Bulletin, 78, 544–568.Google Scholar
  116. Shute, C. H., & Cleal, C. J. (1987). Palaeobotany in museums. Geological Curator, 4, 553–559.Google Scholar
  117. Sigleo, A. C. (1978). Organic geochemistry of silicified wood, Petrified Forest National Park, Arizona. Geochimica et Cosmochimica Acta, 42, 1397–1405.Google Scholar
  118. Sigleo, A. C. (1979). Geochemistry of silicified wood and associated sediments, Petrified Forest National Park, Arizona. Chemical Geology, 26, 151–163.Google Scholar
  119. Smith, R. M. H., & Ward, P. D. (2001). Pattern of vertebrate extinctions across an event bed at the Permian-Triassic boundary in the Karoo Basin of South Africa. Geology, 28, 227–230.Google Scholar
  120. Smith, R. M. H., Eriksson, P. G., & Botha, W. J. (1993). A review of the stratigraphy and sedimentary environments of the Karoo-aged basins of South Africa. Journal of African Earth Science, 16, 143–169.Google Scholar
  121. Soil Survey Staff. (2006). Keys to soil taxonomy (10th ed.). Washington, DC: US Department of Agriculture, Natural Resources Conservation Service. 312 p.Google Scholar
  122. Spicer, R. A. (1989). The formation and interpretation of plant fossil assemblages. Advances in Botanical Research, 16, 96–191.Google Scholar
  123. Spicer, R. A. (1990). Transport/hydrodynamics of plant material. In D. E. G. Briggs & P. R. Crowther (Eds.), Palaeobiology: A synthesis (pp. 230–232). Oxford: Blackwell.Google Scholar
  124. Spicer, R. A. (1991). Plant taphonomic processes. In D. E. G. Briggs & P. Allison (Eds.), Taphonomy: Releasing the data locked in the fossil record (pp. 71–113). New York: Plenum.Google Scholar
  125. Spicer, R. A., & Greer, A. G. (1986). Plant taphonomy in fluvial and lacustrine systems. In T. Broadhead (Ed.), Land plants: University of Tennessee, Department of Geological Sciences Studies in Geology, 15 (pp. 10–26).Google Scholar
  126. Spicer, R. A., & Wolfe, J. A. (1987). Plant taphonomy of late holocene deposits in trinity (Clair Engle) lake, Northern California. Paleobiology, 13, 227–245.Google Scholar
  127. Staub, J. R., Among, H. L., & Gastaldo, R. A. (2000). Seasonal sediment transport and deposition in the Rajang River Delta, Sarawak, East Malaysia. Sedimentary Geology, 133, 249–264.Google Scholar
  128. Stewart, J. H., Anderson, T. H., Haxel, G. B., Silver, L. T., & Wright, J. E. (1986). Late Triassic paleogeography of the southern Cordillera; the problem of a source for voluminous volcanic detritus in the Chinle Formation of the Colorado Plateau region. Geology, 14, 567–570.Google Scholar
  129. Strömberg, C. A. E. (2004). Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the Great Plains of North America during the late Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 207, 239–275.Google Scholar
  130. Strother, P. K. (2000). Cryptospores: The origin and early evolution of the terrestrial flora. In R. A. Gastaldo & and W. A. DiMichele (Eds.), Phanerozoic Terrestrial Ecosystems: The Paleontological Society Papers, 6 (pp. 3–19).Google Scholar
  131. Tabor, N. J., Montanez, I. P., Steiner, M. B., & Schwindt, D. (2007). δ13C Values of carbonate nodules across the Permian-Triassic boundary in the Karoo Supergroup (South Africa) reflect a stinking sulfurous swamp, not atmospheric CO2. Palaegeography, Palaeoclimatology, Palaeoecology, 252, 370–381.Google Scholar
  132. Tidwell, W. D. (1990). Preliminary report on the megafossil flora of the Upper Jurassic Morrison Formation. Hunteria, 2, 12.Google Scholar
  133. Traverse, A. (Ed.). (1994). Sedimentation of organic particles (p. 556). Cambridge: Cambridge University Press.Google Scholar
  134. Turner, C. E., & Peterson, F. (2004). Reconstruction of the Upper Jurassic Morrison Formation extinct ecosystem – a synthesis. Sedimentary Geology, 167, 309–355.Google Scholar
  135. Ward, P. D., Montgomery, D. R., & Smith, R. M. H. (2000). Altered river morphology in South Africa related to the Permian-Triassic extinction. Science, 289, 1740–1743.Google Scholar
  136. Wing, S. L. (1984). Relation of paleovegetation to geometry and cyclicity of some fluvial carbonaceous deposits. Journal of Sedimentary Petrology, 54, 52–66.Google Scholar
  137. Wing, S. L., & DiMichele, W. A. (1995). Conflict between local and global changes in plant diversity through geological time. Palaios, 10, 551–564.Google Scholar
  138. Wing, S. L., Hickey, L. J., & Swisher, C. C. (1993). Implications of an exceptional fossil flora for Late Cretaceous vegetation. Nature, 363, 342–344.Google Scholar
  139. Wright, V. P., & Marriott, S. B. (1993). The sequence stratigraphy of fluvial depositional systems: The role of floodplain sediment storage. Sedimentary Geology, 86, 203–210.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of GeologyColby CollegeWatervilleUSA
  2. 2.Department of Geological SciencesUniversity of Minnesota DuluthDuluthUSA
  3. 3.ExxonMobil Exploration CompanyHoustonUSA

Personalised recommendations