Taphonomy pp 223-247 | Cite as

Molecular Taphonomy of Plant Organic Skeletons

  • Margaret E. Collinson
Part of the Aims & Scope Topics in Geobiology Book Series book series (TGBI, volume 32)


Selective preservation of resistant biomacromolecules, such as cutan in leaf cuticles; lignin in woods, fruit walls and seed coats; sporopollenin in spores and pollen and algaenan in algal cysts, has previously been invoked in survival of these tissues and organs in the fossil record. A growing body of evidence is questioning this paradigm, suggesting that biomacromolecules may provide the structural template for formation of geomacromolecules in fossils which form as the result of (i) polymerization of labile constituents (e.g. in situ polymerization of cutin, waxes and internal lipids in cuticles; oxidative polymerization incorporating an aliphatic component into sporopollenin), (ii) loss (e.g. loss of cellulose from lignin–cellulose complexes), and (iii) transformation (e.g. lignin methoxyphenols to phenols). Recommended future research directions include: (a) taphonomic experiments to simulate the molecular alteration sequence in diverse environments, (b) analysis of fossils (time series) from a range of depositional settings, and (c) identifying those modern plant organs that lack an expected fossil record. This will require a combination of microscopical and chemical approaches to monitor alteration and understand specific controls on plant preservation.


Seed Coat Fossil Record Oxidative Polymerization Plant Fossil Depositional Setting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Special thanks are due to Jan de Leeuw and Pim van Bergen for their long term interest, enthusiasm, support, and friendship in our collaborative studies of the organic geochemistry of plant fossils. I would like to thank Ben van Aarsen, Pim van Bergen, Peter Blokker, Tony Brain, Derek Briggs, Richard Evershed, Paul Finch, Neal Gupta, Jan de Leeuw, Raymond Michels, Barbara Mösle, Rich Pancost, Andrew Scott and Gerard Versteegh for their previous, and in many cases ongoing, collaboration; to the chemists amongst them also my thanks for their patience with my inadequate knowledge of chemistry. Any errors in the present work are entirely those of the author. Funding from a Royal Society 1983 University Research Fellowship, the NERC Biomolecular Palaeontology Special Topic, the NERC Ancient Biomolecules Initiative (grants GST/02/1030 and 1390) and from the Petroleum Research Fund, American Chemical Society (the latter to collaborators Pancost, Briggs and Michels) is gratefully acknowledged.


  1. Almendros, G., Zancada, M. C., Gonzakez-Vila, F. J., Lesiak, M. A., & Alvarez-Ramis, C. (2005). Molecular features of fossil organic matter in remains of the Lower Cretaceous fern Weichselia reticulata from Przenosza basement (Poland). Organic Geochemistry, 36, 1108–1115.CrossRefGoogle Scholar
  2. Aucour, A.-M., Faure, P., Gomez, B., Hauteville, J., Michels, R., & Thenenard, F. (2009). Insights into preservation of fossil plant cuticles using thermally assisted hydrolysis methylation. Organic Geochemistry, 40, 784–794.CrossRefGoogle Scholar
  3. Bargel, H., Barthlott, W., Koch, K., Schreiber, L., & Nienhuis, C. (2004). Plant cuticles: Multifunctional interfaces between plant and environment. In A. R. Hemsley & I. Poole (Eds.), The evolution of plant physiology, Linnean society symposium series no. 21 (pp. 171–194). London: Elsevier.Google Scholar
  4. Batten, D. J. (1996). Green and blue-green algae, 7C colonial chlorococcales. In J. Jansonius & D. C. McGregor (Eds.), Palynology: principles and applications. American Association of Stragigraphic Palynologists Foundation (Vol. 1, pp. 191–203).Google Scholar
  5. Batten, D. J. & Grenfell, H. R. (1996). Green and blue-green algae, 7D Botryococcus. In J. Jansonius & D. C. McGregor (Eds.), Palynology: principles and applications. American Association of stragigraphic palynologists foundation (Vol. 1, pp. 205–214).Google Scholar
  6. Bernard, S., Benzerara, K., Beyssac, O., Brown, G. E., Grauvogel Stamm, L., & Duringer, P. (2009). Ultrastructural and chemical study of modern and fossil sporoderms by scanning transmission X-ray Microscopy (STXM). Review of Palaeobotany and Palynology, 156, 248–261.CrossRefGoogle Scholar
  7. Blokker, P., Schouten, S., van den Ende, H., de Leeuw, J. W., Hatcher, P. G., & Sinninghe Damsté, J. S. (1998). Chemical structure of algaenans from the fresh water algae Tetraedron minimum, Scenedesmus communis and Pediastrum boryanum. Organic Geochemistry, 29, 1453–1468.CrossRefGoogle Scholar
  8. Blokker, P., Schouten, S., de Leeuw, J. W., Sinninghe Damsté, J. S., & van den Ende, H. (2000). A comparative study of fossil and extant algaenans using ruthenium tetroxide degradation. Geochimica et Cosmochimica Acta, 64, 2055–2065.CrossRefGoogle Scholar
  9. Boom, A., Sinninghe Damsté, J. S., & de Leeuw, J. W. (2005). Cutan, a common aliphatic biopolymer in cuticles of drought-adapted plants. Organic Geochemistry, 36, 595–601.CrossRefGoogle Scholar
  10. Boyce, C. K., Cody, G. D., Fogel, M. L., Hazen, R. M., Alexander, C. M. O’. D., & Knoll, A. H. (2003). Chemical evidence for cell wall lignification and the evolution of tracheids in Early Devonian plants. International Journal of Plant Sciences, 164, 691–702.CrossRefGoogle Scholar
  11. Braadbaart, F., Wright, P. J., van der Horst, J., & Boon, J. J. (2007). A laboratory simulation of the carbonization of sunflower achenes and seeds. Journal of Analytical and Applied Pyrolysis, 78, 316–327.CrossRefGoogle Scholar
  12. Briggs, D. E. G. (1999). Molecular taphonomy of animal and plant cuticles; selective preservation and diagenesis. Philosophical Transactions of the Royal Society, London, B, 354, 7–17.CrossRefGoogle Scholar
  13. Briggs, D. E. G., Evershed, R. P., & Lockheart, M. J. (2000). The biomolecular paleontology of continental fossils. In D. H. Erwin, & S. L. Wing (Eds.), Deep time: paleobiology’s perspective. Paleobiology, 26 (Suppl. 4), 169–193.Google Scholar
  14. Collinson, M. E., & van Bergen, P. F. (2004). Evolution of angiosperm fruit and seed dispersal biology and ecophysiology: Morphological, anatomical and chemical evidence from fossils. In A. R. Hemsley & I. Poole (Eds.), The evolution of plant physiology, Linnean society symposium series no. 21 (pp. 343–377). London: Elsevier.Google Scholar
  15. Collinson, M. E., Finch, P. F., Mösle, B., Wilson, R., & Scott, A. C. (1998). The preservation of plant cuticle in the fossil record: A chemical and microscopical investigation. Ancient Biomolecules, 2, 251–265.Google Scholar
  16. Collinson, M. E., Finch, P. F., Mösle, B., Wilson, R., & Scott, A. C. (2000). Preservation of plant cuticles. Acta Palaeobotanica, 1999 (Suppl. 2), 629–632.Google Scholar
  17. Czaja, A. D., Kudryavtsev, A. B., Cody, G. D., & Schopf, J. W. (2009). Characterisation of permineralised kerogen from an Eocene fossil fern. Organic Geochemistry, 40, 353–364.CrossRefGoogle Scholar
  18. De Leeuw, J. W. (2007). On the origin of sedimentary aliphatic macromolecules, a comment. Organic Geochemistry, 38, 1585–1587.CrossRefGoogle Scholar
  19. De Leeuw, J. W., & Largeau, C. (1993). A review of macromolecular compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In M. H. Engel & S. A. Macko (Eds.), Organic geochemistry. Principles and applications (pp. 23–72). New York: Plenus.Google Scholar
  20. De Leeuw, J. W., Versteegh, G. J. M., & van Bergen, P. F. (2006). Biomacromolecules of plants and algae and their fossil analogues. Plant Ecology, 189, 209–233.Google Scholar
  21. Edwards, D., Ewbank, G., & Abbott, G. D. (1997). Flash pyrolysis of the outer cortical tissues in Lower Devonian Psilophyton. Botanical Journal of the Linnean Society, 124, 345–360.CrossRefGoogle Scholar
  22. Ewbank, G., Edwards, D., & Abbott, G. D. (1996). Chemical characterization of Lower Devonian vascular plants. Organic Geochemistry, 25, 461–473.CrossRefGoogle Scholar
  23. Fengel, D. (1991). Aging and fossilisation of wood and its components. Wood Science and Technology, 25, 153–177.Google Scholar
  24. Fensome, R. A., Riding, J. B., Taylor, F. J. R. (1996). Dinoflagellates. In J. Jansonius & D. C. McGregor (Eds.), Palynology: principles and applications. American Association of Stragigraphic Palynologists Foundation (Vol. 1, pp. 107–169).Google Scholar
  25. Figuerial, I., Mosbrugger, V., Rowe, N. P., Ashraf, A. R., Utescher, T., & Jones, T. P. (1999). The Miocene peat-forming vegetation of northwestern Germany: An analysis of wood remains and comparison with previous palynological interpretations. Review of Palaeobotany and Palynology, 104, 239–266.CrossRefGoogle Scholar
  26. Finch, P., & Freeman, G. (2001). Simulated diagenesis of plant cuticles – implications for organic fossilisation. Journal of Analytical and Applied Pyrolysis, 58, 229–235.CrossRefGoogle Scholar
  27. Friis, E. M., Pedersen, K. R., & Crane, P. R. (2006). Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction. Palaeo, 3(232), 251–293.CrossRefGoogle Scholar
  28. Gupta, N. S., & Briggs, D. E. G. (this volume). Taphonomy of organic animal skeletons through time.Google Scholar
  29. Gupta, N. S., & Pancost, R. D. (2004). Biomolecular and physical taphonomy of angiosperm leaf in early decay: Implications for fossilisation. Palaios, 19, 428–440.CrossRefGoogle Scholar
  30. Gupta, N. S., Collinson, M. E., Briggs, D. E. G., Evershed, R. P., & Pancost, R. D. (2006). Reinvestigation of the occurrence of cutan in plants: Implications for the leaf fossil record. Paleobiology, 32, 432–449.CrossRefGoogle Scholar
  31. Gupta, N. S., Michels, R., Briggs, D. E. G., Evershed, R. P., & Pancost, R. D. (2006). The organic preservation of fossil arthropods: An experimental study. Proceedings of the Royal Society B. doi:10.1098 rspb 2006.3646.Google Scholar
  32. Gupta, N. S., Briggs, D. E. G., Collinson, M. E., Evershed, R. P., Michels, R., Jack, S. K., et al. (2007a). Evidence for the in situ polymerisation of labile aliphatic organic compounds during the preservation of fossil leaves: Implications for organic matter preservation. Organic Geochemistry, 38, 499–522.CrossRefGoogle Scholar
  33. Gupta, N. S., Briggs, D. E. G., Collinson, M. E., Evershed, R. P., Michels, R., & Pancost, R. D. (2007b). Molecular preservation of plant and insect cuticles from the Oligocene Enspel Formation, Germany: Evidence against derivation of aliphatic polymer from sediment. Organic Geochemistry, 38, 404–418.CrossRefGoogle Scholar
  34. Gupta, N. S., Michels, R., Briggs, D. E. G., Collinson, M. E., Evershed, R. P., & Pancost, R. D. (2007c). Experimental evidence for the formation of geomacromolecules from plant leaf lipids. Organic Geochemistry, 38, 28–36.CrossRefGoogle Scholar
  35. Gupta, N. S., Briggs, D. E. G., Collinson, M. E., Evershed, R. P., Michels, R., & Pancost, R. D. (2007d). De Leeuw comment “on the origin of sedimentary aliphatic macromolecules – reply. Organic Geochemistry, 38, 1588–1591.CrossRefGoogle Scholar
  36. Gupta, N. S., Yangg, H., Leng, Q., Briggs, D. E. G., Cody, G. D., & Summons, R. E. (2009). Diagenesis of plant biopolymers: Decay and macromolecular preservation of Metasequoia. Organic Geochemistry, 40, 802–809.CrossRefGoogle Scholar
  37. Hedges, J. I., Cowie, G. K., Ertel, J. R., Barbour, R. J., & Hatcher, P. G. (1985). Degradation of carbohydrates and lignin in buried woods. Geochemica et Cosmochimica Acta, 49, 701–711.CrossRefGoogle Scholar
  38. Herendeen, P. S., & Dilcher, D. L. (1992). Advances in legume systematics, part 4. The fossil record. Kew: Royal Botanic Gardens. 326 pp.Google Scholar
  39. Hoefs, M. J. L., Sinninghe Damste, J. S., De Lange, G. J. and de Leeuw, J. W. (1998). Changes in kerogen composition across an oxidation front in Madeira abyssal plain turbidites as revealed by pyrolysis GC-MS. Proceedings of the Ocean Drilling Program, Scientific results, 157 (pp. 591–607).Google Scholar
  40. Hooker, J. J., Collinson, M. E., van Bergen, P. F., Singer, R. L., de Leeuw, J. W., & Jones, T. P. (1995). Reconstruction of land and freshwater palaeoenvironments near the Eocene-Oligocene boundary, southern England. Journal of the Geological Society, London, 152, 449–468.CrossRefGoogle Scholar
  41. Javaux, E. J., & Marshall, C. P. (2006). A new approach in deciphering early protist paleobiology and evolution: Combined microscopy and microchemistry of single Proterozoic acritarchs. Review of Palaeobotany and Palynology, 139, 1–15.CrossRefGoogle Scholar
  42. Johnson, E. J., Dorot, O., Liu, J., Cherfetz, B., & Xing, B. (2007). Spectroscopic characterisation of aliphatic moieties in four plant cuticles. Communications in Soils Science and Plant Analysis, 38, 2461–2478.CrossRefGoogle Scholar
  43. Kaelin, P. E., Huggett, W. W., & Anderson, K. B. (2006). Comparison of vitrified and unvitrified Eocene woody tissues by TMAH thermochemolysis – Implications for the early stages of the formation of vitrinite. Geochemical transactions, 2006, 7–9.Google Scholar
  44. Kelleher, B. P., Simpson, M. J., & Simpson, A. J. (2006). Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy. Geochimica et Cosmochimica Acta, 70, 4080–4094.CrossRefGoogle Scholar
  45. Kim, Y. S., & Singh, A. P. (2000). Micromorphological characteristics of wood biodegradation in wet environments: A review. IAWA Journal, 21, 135–155.Google Scholar
  46. Kodner, R. B., Summons, R. E., & Knoll, A. H. (2009). Phylogenetic investigation of the aliphatic, non-hydrolyzable biopolymer algaenan, with a focus on green algae. Organic Geochemistry, 40, 854–862.CrossRefGoogle Scholar
  47. Kuypers, M. M. M., Blokker, P., Hopmans, E. C., Kinkel, H., Pancost, R. D., Schouten, S., et al. (2002). Archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1b. Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 211–234.CrossRefGoogle Scholar
  48. Lechien, V., Rodriguez, C., Ongena, M., Hiligsmann, S., Rulmont, A., & Thonart, P. (2006). Physicochemical and biochemical characterization of non-biodegradable cellulose in Miocene gymnosperm wood from Entre-Sambre-et-Meuse, southern Belgium. Organic Geochemistry, 37, 1465–1476.CrossRefGoogle Scholar
  49. Marshall, C. P., Javaux, E. J., Knoll, A. H., & Walter, M. R. (2005). Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: A new approach to Palaeobiology. Precambrian Research, 138, 208–224.CrossRefGoogle Scholar
  50. Metzger, P., Rager, M., & Largeau, C. (2007). Polyacetals based on polymethylsqualene diols, precursors of algaenan in Botryococcus braunii race B. Organic Geochemistry, 38, 566–581.CrossRefGoogle Scholar
  51. Metzger, P., Rager, M., & Fosse, C. (2008). Braunicetals: Acetals from condensation of macrocyclic aldehydes and terpene diols in Botryococcus braunii. Phytochemistry, 69, 2380–2386.CrossRefGoogle Scholar
  52. Mosbrugger, V., Gee, C. T., Belz, G., & Ashraf, A. R. (1994). Three-dimensional reconstruction of an in-situ Miocene peat forest from the Lower Rhine Embayment, northwestern Germany – new methods in palaeovegetation analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 110, 295–317.CrossRefGoogle Scholar
  53. Mösle, B., Finch, P. F., Collinson, M. E., & Scott, A. C. (1997). Comparison of modern and fossil plant cuticles by selective chemical extraction monitored by flash pyrolysis-gas chromatography-mass spectrometry and electron microscopy. Journal of Analytical Pyrolysis, 40–41, 585–597.CrossRefGoogle Scholar
  54. Nip, M., Tegelaar, E. W., de Leeuw, J. W., & Schenk, P. A. (1986). A new nonsaponifiable highly aliphatic and resistant biopolymer in plant cuticles. Naturwissenschaften, 73, 579–585.CrossRefGoogle Scholar
  55. Nip, M., Tegelaar, E. W., Brinkhuis, H., de Leeuw, J. W., Schenk, P. A., & Holloway, P. J. (1986). Analysis of modern and fossil plant cuticles by Curie point Py-GC and Curie point Py-GC-MS: Recognition of a new, highly aliphatic and resistant biopolymer. Organic Geochemistry, 10, 769–778.CrossRefGoogle Scholar
  56. Poole, I., & van Bergen, P. F. (2006). Physiognomic and chemical characters in wood as palaeoclimate proxies. Plant Ecology, 182, 175–195.Google Scholar
  57. Poole, I., Dolezych, M., Kool, J., van der Burgh, J., & van Bergen, P. F. (2006). Do stable carbon isotope compositions of brown coal woods record changes in Lower Miocene palaeoecology? Palaeo, 3(236), 345–354.CrossRefGoogle Scholar
  58. Raven, J. A., & Edwards, D. (2004). Physiological evolution of lower embryophytes: Adaptations to the terrestrial environment. In A. R. Hemsley & I. Poole (Eds.), The evolution of plant physiology, Linnean society symposium series no. 21 (pp. 17–41). London: Elsevier.Google Scholar
  59. Richter, S. L., Johnson, A. H., Dranoff, M. M., LePage, B. A., & Williams, C. J. (2008). Oxygen isotope composition of Eocene- to Holocene-aged cellulose. Geochimica et Cosmochimica Acta, 72, 2744–2753.CrossRefGoogle Scholar
  60. Riederer, M., & Müller, C. (Eds.). (2006). Biology of the plant cuticle. Oxford: Blackwell. 438 pp.Google Scholar
  61. Sawada, K., Arai, T., & Tsukagoshi, M. (2008). Compositions of resistant macromolecules in fossil dry fruits of Liquidambar and Nyssa (Pliocene, central Japan). Organic Geochemistry, 39, 919–923.CrossRefGoogle Scholar
  62. Schaal, S., & Ziegler, W. (1992). Messel an insight into the history of life and of the earth. Oxford: Clarendon.Google Scholar
  63. Schoenhut, K., Vann, D. R., & LePage, B. A. (2004). Cytological and ultrastructural preservation in Eocene Metasequoia leaves from the Canadian High Arctic. American Journal of Botany, 91, 816–824.CrossRefGoogle Scholar
  64. Shechter, M., & Chefetz, B. (2008). Insights into the sorption properties of cutin and cutan biopolymers. Environmental Science and Technology, 42, 1165–1171.CrossRefGoogle Scholar
  65. Shen-Miller, J., Mudgett, M. B., Schopf, J. W., et al. (1995). Exceptional seed longevity and robust growth: Ancient sacred lotus from China. American Journal of Botany, 82, 1367–1380.CrossRefGoogle Scholar
  66. Stankiewicz, B. A., Mastalerz, M., Kruge, M. A., van Bergen, P. F., & Sadowska, A. (1997). A comparative study of modern and fossil cone scale and seeds of conifers: A geochemical approach. New Phytologist, 135, 375–393.CrossRefGoogle Scholar
  67. Stankiewicz, B. A., Scott, A. C., Collinson, M. E., Finch, P., Mösle, B., Briggs, D. E. G., et al. (1998). The molecular taphonomy of arthropod and plant cuticles from the Carboniferous of North America. Journal of the Geological Society, London, 155, 453–462.CrossRefGoogle Scholar
  68. Stankiewicz, B. A., Briggs, D. E. G., Michels, R., Collinson, M. E., Flannery, M. B., & Evershed, R. P. (2000). An alternative origin of aliphatic polymer in kerogen. Geology, 28, 559–562.CrossRefGoogle Scholar
  69. Suh, M. C., Samuels, A. L., Jetter, R., Kunst, L., Pollard, M., Ohlrogge, J., et al. (2005). Cuticular lipid composition, surface structure and gene expression in Arabidopsis stem epidermis. Plant Physiology, 139, 1649–1665.CrossRefGoogle Scholar
  70. Tegelaar, E. W., de Leeuw, J. W., Derenne, S., & Largeau, C. (1989). A reappraisal of kerogen formation. Geoochimica et Cosmochimica Acta, 53, 3103–3106.CrossRefGoogle Scholar
  71. Tegelaar, E. W., Kerp, H., Visscher, H., Schenk, P. A., & de Leeuw, J. W. (1991). Bias of the paleobotanical record as a consequence of variations in the chemical composition of higher vascular plant cuticles. Paleobiology, 17, 133–144.Google Scholar
  72. Van Bergen, P. F., Collinson, M. E., & de Leeuw, J. W. (1993a). Chemical composition and ultrastructure of fossil and extant salvinialean microspore massulae and megaspores. Grana, 1993(Suppl. 1), 18–30.CrossRefGoogle Scholar
  73. Van Bergen, P. F., Collinson, M. E., Hatcher, P. G., & de Leeuw, J. W. (1993b). Lithological control on the state of preservation of fossil seed coats of water plants. Organic geochemistry, 22, 683–702.Google Scholar
  74. Van Bergen, P. F., Collinson, M. E., Sinninghe Damste, J. S., & de Leeuw, J. W. (1994). Chemical and microscopical characterisation of inner seed coats of fossil water plants. Geochimica et Cosmochimica Acta., 58, 231–239.CrossRefGoogle Scholar
  75. Van Bergen, P. F., Collinson, M. E., Briggs, D. E. G., de Leeuw, J. W., Scott, A. C., Evershed, R. P., et al. (1995). Resistant biomacromolecules in the fossil record. Acta Botanica Neerlandica, 44(4), 319–342.Google Scholar
  76. Van Bergen, P. F., Bland, H. A., Horton, M. C., & Evershed, R. P. (1997). Chemical and morphological changes in archeological seeds and fruits during preservation by desiccation. Geochimica et Cosmochimica Acta, 61, 1919–1930.CrossRefGoogle Scholar
  77. Van Bergen, P. F., Hatcher, P. G., Boon, J. J., et al. (1997). Macromolecular composition of the propagule wall of Nelumbo nucifera. Phytochemistry, 45, 601–610.CrossRefGoogle Scholar
  78. Van Bergen, P. F., Collinson, M. E., & Stankiewicz, B. A. (2000). The importance of molecular palaeobotany. Acta Palaeobotanica, 1999(Suppl. 2), 629–632.Google Scholar
  79. Van Bergen, P. F., Poole, I., Ogilvie, T. M. A., & Evershed, R. P. (2000). Evidence for demethylation of syringyl moieties in archaeological wood using pyrolysis-gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 14, 71–79.CrossRefGoogle Scholar
  80. Van Bergen, P. F., Blokker, P., Collinson, M. E., Sinninghe Damste, J. S., & de Leeuw, J. W. (2004). Structural biomacromolecules in plants: What can be learnt from the fossil record? In A. R. Hemsley & I. Poole (Eds.), The evolution of plant physiology, Linnean society symposium series no. 21 (pp. 133–154). London: Elsevier.Google Scholar
  81. Van Geel, B., & Grenfell, H. R. (1996). Green and blue-green algae, 7A Spores of Zygnemataceae. In J. Jansonius & D. C. McGregor (Eds.), Palynology: Principles and applications. American Association of Stragigraphic Palynologists Foundation (Vol. 1, pp. 173–179).Google Scholar
  82. Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38, 719–833.CrossRefGoogle Scholar
  83. Versteegh, G. J. M., & Blokker, P. (2004). Resistant macromolecules of extant and fossil microalgae. Phycological Research, 52, 325–339.CrossRefGoogle Scholar
  84. Versteegh, G. J. M., Blokker, P., Wood, G. D., Collinson, M. E., Sinninghe Damsté, J. S., & de Leeuw, J. W. (2004). Oxidative polymerization of unsaturated fatty acids as a preservation pathway for dinoflagellate organic matter. Organic Geochemistry, 35, 1129–1139.CrossRefGoogle Scholar
  85. Wellman, C. H. (2004). Origin, function and development of the spore wall in early land plants. In A. R. Hemsley & I. Poole (Eds.), The evolution of plant physiology, Linnean society symposium series no. 21 (pp. 43–63). London: Elsevier.Google Scholar
  86. Wilde, V. (2004). Aktuelle Übersicht zur flora aus dem mitteleozänen ‘Öilschiefer’ der Grube Mesel bei Darmstadt (Hessen, Deutschland). Courier Forschungsinstitut Senckenberg, 252, 109–114.Google Scholar
  87. Yang, H., Huang, Y., Leng, Q., LePage, B. A., & Williams, C. J. (2005). Biomolecular preservation of Tertiary Metasequoia fossil lagerstätten revealed by comparative pyrolysis analysis. Review of Palaeobotany and Palynology, 134, 237–256.CrossRefGoogle Scholar
  88. Yule, B. L., Roberts, S., & Marshall, J. E. A. (2000). The thermal evolution of sporopollenin. Organic Geochemistry, 31, 859–870.CrossRefGoogle Scholar
  89. Zodrow, E. L., & Mastalerz, M. (2009). A proposed origin for fossilized Pennsylvanian plant cuticles by pyrite oxidation (Sydney Coalfield, Nova Scotia, Canada). Bulletin of Geosciences, 84, 227–240.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Margaret E. Collinson
    • 1
  1. 1.Department of Earth SciencesRoyal Holloway University of LondonEghamUK

Personalised recommendations