Using a New Fluorescent Probe of Silicification to Measure Species-Specific Activities of Diatoms Under Varying Environmental Conditions

Conference paper

Abstract

A new method is presented that enables distinguishing between active and non-active cells with regard to biogenic silica deposition during frustule formation in natural communities of siliceous phytoplankton. The PDMPO method is based on the fluorescence of biogenic silica after incubation with the probe. Only those cells that have been depositing silica (by adjunction of intercalary plates during the cell cycle or by depositing a new frustule valve upon cell division) exhibit a typical fluorescence that is proportional to the amount of biogenic silica deposited. This new method has several advantages; it is easy to use at sea, very sensitive, and samples can be conserved for several months without major loss of fluorescence. This method offers new possibilities of investigation of ecophysiological controls within the natural diatom community and will also bring more information to the new generation of sophisticated multi-element multi-species biogeochemical models.

References

  1. Billen G, Lancelot C, Meybeck M (1991) N, P and Si retention along the aquatic continuum from land to ocean. In: Mantoura RFC, Martin JM, Wollast R (eds) Ocean margin processes in global change. Wiley, Chichester, UK, pp 19–44Google Scholar
  2. Brzezinski MA, Conley DJ (1994) Silicon deposition during the cell cycle of Thalassiosira weissflogii (Bacillariophyceae) determined using dual rhodamine 123 and propidium iodide staining. J Phycol 30:45–55CrossRefGoogle Scholar
  3. Carlsson P, Granéli E (1999) Effects of N:P:Si ratios and zooplankton grazing on phytoplankton communities in the northern Adriatic Sea. II. Phytoplankton species composition. Aquat Microb Ecol 18:55–65CrossRefGoogle Scholar
  4. Del Amo Y (1996) Dynamique et structure des communautés phytoplanctoniques en écosystème côtier perturbé ; cinétiques de l’incorporation du silicium par les diatomées. Thèse de Doctorat de Chimie Marine de l’UBO, BrestGoogle Scholar
  5. Del Amo Y, Le Pape O, Tréguer P, Quéguiner B, Ménesguen A, Aminot A (1997a) Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. I. Seasonal evolution of nutrient limitation for the diatom-dominated phytoplankton of the Bay of Brest (France). Mar Ecol Prog Ser 161:213–224CrossRefGoogle Scholar
  6. Del Amo Y, Quéguiner B, Tréguer P, Breton H, Lampert L (1997b) Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. II. Specific role of the silicic acid pump in the year-round dominance of diatoms in the Bay of Brest (France). Mar Ecol Prog Ser 161:225–237CrossRefGoogle Scholar
  7. Diwu Z, Chen C-S, Zhang C, Klaubert DH, Haugland RP (1999) A novel acidotropic pH indicator and its potential application in labelling acidic organelles of live cells. Chem Biol 6:411–418CrossRefGoogle Scholar
  8. Granéli E, Carlsson P, Turner JT, Tester PA, Béchemin C, Dawson R, Funari E (1999) Effects of N:P:Si ratios and zooplankton grazing on phytoplankton communities in the northern Adriatic Sea. I. Nutrients, phytoplankton biomass, and polysaccharide production. Aquat Microb Ecol 18:37–54CrossRefGoogle Scholar
  9. Hildebrand M (2000) Silicic acid transport and its control during cell wall silicification in diatoms. In: Baeuerlein EJ (ed) Biomineralization: from biology to biotechnology and medical application. Wiley-VCH, Weinheim, pp 171–188Google Scholar
  10. Le Pape O, Del Amo Y, Ménesguen A, Aminot A, Quéguiner B, Tréguer P (1996) Resistance of a coastal ecosystem under increasing eutrophic conditions: the Bay of Brest (France), a semi-enclosed zone of Western Europe. Cont Shelf Res 16:1885–1907CrossRefGoogle Scholar
  11. Leblanc K, Hutchins DA (2005) New applications of a biogenic silica deposition fluorophore in the study of oceanic diatoms. Limnol Oceanogr Method 3:462–476CrossRefGoogle Scholar
  12. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea water. In: Hill MN (ed) The sea, ideas and observations on progress in the study of the seas. Interscience, New York, pp 26–77Google Scholar
  13. Shimizu K, Del Amo Y, Brzezinski MA, Stucky GD, Morse DE (2001) A novel fluorescent silica tracer for biological silicification studies. Chem Biol 8:1051–1060CrossRefGoogle Scholar
  14. Shipe RF, Brzezinski MA (1999) A study of Si deposition synchrony in Rhizosolenia (Bacillariophyceae) mats using a novel 32Si autoradiographic method. J Phycol 35:995–1004CrossRefGoogle Scholar
  15. Smayda TJ (1990) Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Granéli E (ed) Toxic marine phytoplankton. Elsevier, New York, pp 29–40Google Scholar
  16. Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J Cons Int Exp Mer 18:287–295Google Scholar
  17. Tréguer P, Lindner L, Van Bennekom AJ, Leynaert A, Panouse M, Jacques G (1991) Production of biogenic silica in the Weddell-Scotia Seas measured with 32Si. Limnol Oceanogr 36:1217–1227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Laboratoire d’Océanographie Physique et Biogéochimique, OSU/Centre d’Océanologie de MarseilleAix-Marseille Université, CNRS, LOPB-UMR 6535MarseilleFrance
  2. 2.Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC) and CSIRO Marine and Atmospheric LaboratoriesHobartAustralia
  3. 3.Department of Earth and Environmental SciencesUniversité Libre de Bruxelles – CP160/02BruxellesBelgium
  4. 4.Geology and Mineralogy - Section of Mineralogy and PetrographyRoyal Museum for Central AfricaTervurenBelgium

Personalised recommendations