Cholesterol Oxidase: Structure and Function

Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 51)

Abstract

Cholesterol oxidase is a bacterial-specific flavoenzyme that catalyzes the oxidation and isomerisation of steroids containing a 3β hydroxyl group and a double bond at the Δ5–6 of the steroid ring system. The enzyme is a member of a large family of flavin-specific oxidoreductases and is found in two different forms: one where the flavin adenine dinucleotide (FAD) cofactor is covalently linked to the protein and one where the cofactor is non-covalently bound to the protein. These two enzyme forms have been extensively studied in order to gain insight into the mechanism of flavin-mediated oxidation and the relationship between protein structure and enzyme redox potential. More recently the enzyme has been found to play an important role in bacterial pathogenesis and hence further studies are focused on its potential use for future development of novel antibacterial therapeutic agents. In this review the biochemical, structural, kinetic and mechanistic features of the enzyme are discussed.

Keywords

Cholesterol oxidase Flavoenzyme Enzyme mechanism Redox catalysis Oxygen channel Protein structure 

References

  1. Allain, C.C., Poon, L.S., Chan, C.S., Richmond, W., and Fu, P.C., 1974, Enzymatic determination of total serum cholesterol. Clin. Chem. 20: 470–475.PubMedGoogle Scholar
  2. Anton, N., Santos-Aberturas, J., Mendes, M.V., Guerra, S.M., Martin, J.F., and Aparicio, J.F., 2007, PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. Microbiology 153: 3174–3183.PubMedCrossRefGoogle Scholar
  3. Aparicio, J.F., Caffrey, P., Gil, J.A., and Zotchev, S.B., 2003, Polyene antibiotic biosynthesis gene clusters. Appl. Microbiol. Biotechnol. 61: 179–188.PubMedGoogle Scholar
  4. Aparicio, J.F., Mendes, M.V., Anton, N., Recio, E., and Martin, J.F., 2004, Polyene macrolide antibiotic biosynthesis. Curr. Med. Chem. 11: 1645–1656.PubMedGoogle Scholar
  5. Arya, S.K., Datta, M., Singh, S.P., and Malhotra, B.D., 2007, Biosensor for total cholesterol estimation using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane self-assembled monolayer. Anal. Bioanal. Chem. 389: 2235–2242.PubMedCrossRefGoogle Scholar
  6. Barenholz, Y., Patzer, E.J., Moore, N.F., and Wagner, R.R., 1978, Cholesterol oxidase as a probe for studying membrane composition and organization. Adv. Exp. Med. Biol. 101: 45–56.PubMedGoogle Scholar
  7. Basu, A.K., Chattopadhyay, P., Roychoudhuri, U., and Chakraborty, R., 2007, Development of cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on oxygen electrode for the determination of total cholesterol in food samples. Bioelectrochemistry 70: 375–379.PubMedCrossRefGoogle Scholar
  8. Berg, O.G., Gelb, M.H., Tsai, M.D., and Jain, M.K., 2001, Interfacial enzymology: the secreted phospholipase A(2)-paradigm. Chem. Rev. 101: 2613–2654.PubMedCrossRefGoogle Scholar
  9. Bittman, R., Kasireddy, C.R., Mattjus, P., and Slotte, J.P., 1994, Interaction of cholesterol with sphingomyelin in monolayers and vesicles. Biochemistry 33: 11776–11781.PubMedCrossRefGoogle Scholar
  10. Brooks, C.J., and Smith, A.G., 1975, Cholesterol oxidase. Further studies of substrate specificity in relation to the analytical characterisation of steroids. J. Chromatogr. 112: 499–511.PubMedCrossRefGoogle Scholar
  11. Brooks, C.J., and Smith, A.G., 1980, More on substrate specificity of cholesterol oxidase. Clin. Chem. 26: 1918.PubMedGoogle Scholar
  12. Brunori, M., 2000, Structural dynamics of myoglobin. Biophys. Chem. 86: 221–230.PubMedCrossRefGoogle Scholar
  13. Brzostek, A., Dziadek, B., Rumijowska-Galewicz, A., Pawelczyk, J., and Dziadek, J., 2007, Cholesterol oxidase is required for virulence of Mycobacterium tuberculosis. FEMS Microbiol. Lett. 275: 1106–1112.CrossRefGoogle Scholar
  14. Buckland, B.C., Lilly, M.D., and Dunnill, P., 1976, The kinetics of cholesterol oxidase synthesis by Nocardia rhodocrous. Biotechnol. Bioeng. 18: 601–621.PubMedCrossRefGoogle Scholar
  15. Caldinelli, L., Iametti, S., Barbiroli, A., Bonomi, F., Fessas, D., Molla, G., Pilone, M.S., and Pollegioni, L., 2005, Dissecting the structural determinants of the stability of cholesterol oxidase containing covalently bound flavin. J. Biol. Chem. 280: 22572–22581.PubMedCrossRefGoogle Scholar
  16. Caldinelli, L., Iametti, S., Barbiroli, A., Fessas, D., Bonomi, F., Piubelli, L., Molla, G., and Pollegioni, L., 2008, Relevance of the flavin binding to the stability and folding of engineered cholesterol oxidase containing noncovalently bound FAD. Protein Sci. 17: 409–419.PubMedCrossRefGoogle Scholar
  17. Chen, L., Lyubimov, A., Brammer, L., Vrielink, A., and Sampson, N.S., 2008, The binding and release of oxygen and hydrogen peroxide are directed by a hydrophobic tunnel in cholesterol oxidase. Biochemistry 47: 5368–5377.PubMedCrossRefGoogle Scholar
  18. Cherradi, N., Defaye, G., and Chambaz, E.M., 1993, Dual subcellular localization of the 3 beta-hydroxysteroid dehydrogenase isomerase: characterization of the mitochondrial enzyme in the bovine adrenal cortex. J. Steroid Biochem. Mol. Biol. 46: 773–779.PubMedCrossRefGoogle Scholar
  19. Cherradi, N., Defaye, G., and Chambaz, E.M., 1994, Characterization of the 3 beta-hydroxysteroid dehydrogenase activity associated with bovine adrenocortical mitochondria. Endocrinology 134: 1358–1364.PubMedCrossRefGoogle Scholar
  20. Cherradi, N., Rossier, M.F., Vallotton, M.B., Timberg, R., Friedberg, I., Orly, J., Wang, X.J., Stocco, D.M., and Capponi, A.M., 1997, Submitochondrial distribution of three key steroidogenic proteins (steroidogenic acute regulatory protein and cytochrome p450scc and 3beta-hydroxysteroid dehydrogenase isomerase enzymes) upon stimulation by intracellular calcium in adrenal glomerulosa cells. J. Biol. Chem. 272: 7899–7907.PubMedCrossRefGoogle Scholar
  21. Corbin, D.R., Grebenok, R.J., Ohnmeiss, T.E., Greenplate, J.T., and Purcell, J.P., 2001, Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants. Plant Physiol. 126: 1116–1128.PubMedCrossRefGoogle Scholar
  22. Corbin, D.R., Greenplate, J.T., and Purcell, J.P., 1998, The identification and development of proteins for control of insects in genetically modified crops. Hort. Sci. 33: 614–617.Google Scholar
  23. Corbin, D.R., Greenplate, J.T., Wong, E.Y., and Purcell, J.P., 1994, Cloning of an insecticidal cholesterol oxidase gene and Its expression in bacteria and in plant protoplasts. Appl. Environ. Microbiol. 60: 4239–4244.PubMedGoogle Scholar
  24. Coulombe, R., Yue, K.Q., Ghisla, S., and Vrielink, A., 2001, Oxygen access to the active site of cholesterol oxidase through a narrow channel is gated by an Arg-Glu pair. J. Biol. Chem. 276: 30435–30441.PubMedCrossRefGoogle Scholar
  25. Deng, P., Nienhaus, K., Palladino, P., Olson, J.S., Blouin, G., Moens, L., Dewilde, S., Geuens, E., and Nienhaus, G.U., 2007, Transient ligand docking sites in Cerebratulus lacteus mini-hemoglobin. Gene 398: 208–223.PubMedCrossRefGoogle Scholar
  26. El Yandouzi, E.H., and Le Grimellec, C., 1993, Effect of cholesterol oxidase treatment on physical state of renal brush border membranes: evidence for a cholesterol pool interacting weakly with membrane lipids. Biochemistry 32: 2047–2052.PubMedCrossRefGoogle Scholar
  27. Eventoff, W., and Rossmann, M.G., 1975, The evolution of dehydrogenases and kinases. CRC Crit. Rev. Biochem. 3: 111–140.PubMedCrossRefGoogle Scholar
  28. Fuhrmann, H., Dobeleit, G., Bellair, S., and Guck, T., 2002, Cholesterol oxidase and resistance of Rhodococcus equi to peroxidative stress in vitro in the presence of cholesterol. J. Vet. Med. B Infect. Dis. Vet. Public Health 49: 310–321.PubMedGoogle Scholar
  29. Fukuyama, M., and Miyake, Y., 1979, Purification and some properties of cholesterol oxidase from Schizophyllum commune with covalently bound flavin. J. Biochem. (Tokyo) 85: 1183–1193.Google Scholar
  30. Furse, K.E., Pratt, D.A., Schneider, C., Brash, A.R., Porter, N.A., and Lybrand, T.P., 2006, Molecular dynamics simulations of arachidonic acid-derived pentadienyl radical intermediate complexes with COX-1 and COX-2: Insights into oxygenation regio- and stereoselectivity. Biochemistry 45: 3206–3218.PubMedCrossRefGoogle Scholar
  31. Gadda, G., Wels, G., Pollegioni, L., Zucchelli, S., Ambrosius, D., Pilone, M.S., and Ghisla, S., 1997, Characterization of cholesterol oxidase from Streptomyces hydroscopicus and Brevibacterium sterolicum. Eur. J. Biochem. 250: 369–376.PubMedCrossRefGoogle Scholar
  32. Gatfield, J., and Pieters, J., 2000, Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288: 1647–1650.PubMedCrossRefGoogle Scholar
  33. Gelb, M.H., Jain, M.K., Hanel, A.M., and Berg, O.G., 1995, Interfacial enzymology of glycerolipid hydrolases: lessons from secreted phospholipases A2. Ann. Rev. Biochem. 64: 653–688.PubMedCrossRefGoogle Scholar
  34. Ghisla, S., and Massey, V., 1986, New flavins for old: artificial flavins as active site probes of flavoproteins. Biochem. J. 239: 1–12.PubMedGoogle Scholar
  35. Ghisla, S., and Massey, V., 1989, Mechanism of flavoprotein-catalysed reactions. Eur. J. Biochem. 181: 1–17.PubMedCrossRefGoogle Scholar
  36. Gimpl, G., and Gehrig-Burger, K., 2007, Cholesterol reporter molecules. Biosci. Rep. 27: 335–358.PubMedCrossRefGoogle Scholar
  37. Greenplate, J.T., Duck, N.B., Pershing, J.C., and Purcell, J.P., 1995, Cholesterol oxidase – an oostatic and larvicidal agent active against the cotton boll weevil, Anthonomus grandis. Entomol. Exp. Appl. 74: 253–258.CrossRefGoogle Scholar
  38. Hofacker, I., and Schulten, K., 1998, Oxygen and proton pathways in cytochrome c oxidase. Proteins 30: 100–107.PubMedCrossRefGoogle Scholar
  39. Inouye, Y., Taguchi, K., Fuki, A., Ishimaru, K., Snakamura, S., and Nomi, R., 1982, Purification and characterisation of extracellular 3beta-hydroxysteroid oxidase produced by Streptoverticillium cholesterolicum. Chem. Pharm. Bull. (Tokyo) 30: 951–958.Google Scholar
  40. Ishizaki, R., Hirayama, N., Shinkawa, H., Nimi, O., and Murooka, Y., 1989, Nucleotide sequence of the gene for cholesterol oxidase from a Streptomyces sp. J. Bacteriol. 171: 596–601.PubMedGoogle Scholar
  41. Iwaki, M., Yakovlev, G., Hirst, J., Osyczka, A., Dutton, P.L., Marshall, D., and Rich, P.R., 2005, Direct observation of redox-linked histidine protonation changes in the iron-sulfur protein of the cytochrome bc(1) complex by ATR-FTIR spectroscopy. Biochemistry 44: 4230–4237.PubMedCrossRefGoogle Scholar
  42. Jain, M.K., Gelb, M.H., Rogers, J., and Berg, O.G., 1995, Kinetic basis for interfacial catalysis by phospholipase A2. Meth. Enzymol. 249: 567–614.PubMedCrossRefGoogle Scholar
  43. Kamei, T., Takiguchi, Y., Suzuki, H., Matsuzaki, M., and Nakamura, S., 1978, Purification of 3beta-hydroxysteroid oxidase of Streptomyces violascens origin by affinity chromatography on cholesterol. Chem. Pharm. Bull. (Tokyo) 26: 2799–2804.Google Scholar
  44. Kass, I.J., and Sampson, N.S., 1995, The isomerization catalyzed by Brevibacterium sterolicum cholesterol oxidase proceeds stereospecifically with one base. Biochem. Biophys. Res. Commun. 206: 688–693.PubMedCrossRefGoogle Scholar
  45. Kass, I.J., and Sampson, N.S., 1998a, Evaluation of the role of His447 in the reaction catalyzed by cholesterol oxidase. Biochemistry 37: 17990–18000.PubMedCrossRefGoogle Scholar
  46. Kass, I.J., and Sampson, N.S., 1998b, The importance of Glu361 position in the reaction catalyzed by cholesterol oxidase. Bioorg. Med. Chem. Lett. 8: 2663–2668.PubMedCrossRefGoogle Scholar
  47. Lange, Y., 1992, Tracking cell cholesterol with cholesterol oxidase. J. Lipid Res. 33: 315–321.PubMedGoogle Scholar
  48. Lange, Y., Matthies, H., and Steck, T.L., 1984, Cholesterol oxidase susceptibility of the red cell membrane. Biochim. Biophys. Acta 769: 551–562.PubMedCrossRefGoogle Scholar
  49. Lange, Y., and Steck, T.L., 2008, Cholesterol homeostasis and the escape tendency (activity) of plasma membrane cholesterol. Prog. Lipid Res. 47: 319–332.PubMedCrossRefGoogle Scholar
  50. Lange, Y., Ye, J., and Steck, T.L., 2007, Scrambling of phospholipids activates red cell membrane cholesterol. Biochemistry 46: 2233–2238.PubMedCrossRefGoogle Scholar
  51. Lario, P.I., Sampson, N., and Vrielink, A., 2003, Sub-atomic resolution crystal structure of cholesterol oxidase: what atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity. J. Mol. Biol. 326: 1635–1650.PubMedCrossRefGoogle Scholar
  52. Lartillot, S., and Kedziora, P., 1990, Production, purification and some properties of cholesterol oxidase from a Streptomyces sp. Prep. Biochem. 20: 51–62.PubMedCrossRefGoogle Scholar
  53. Le Lay, S., Li, Q., Proschogo, N., Rodriguez, M., Gunaratnam, K., Cartland, S., Rentero, C., Jessup, W., Mitchell, T., and Gaus, K., 2009, Caveolin-1-dependent and -independent membrane domains. J. Lipid Res. 50: 1609–1620.PubMedCrossRefGoogle Scholar
  54. Li, J., Vrielink, A., Brick, P., and Blow, D.M., 1993, Crystal structure of cholesterol oxidase complexed with a steroid substrate: Implications for flavin adenine dinucleotide dependent alcohol oxidases. Biochemistry 32: 11507–11515.PubMedCrossRefGoogle Scholar
  55. Lim, L., Molla, G., Guinn, N., Ghisla, S., Pollegioni, L., and Vrielink, A., 2006, Structural and kinetic analysis of the H121A mutant of cholesterol oxidase. Biochem. J. 400: 13–22.PubMedCrossRefGoogle Scholar
  56. Linden, K.G., and Benisek, W.F., 1986, The amino acid sequence of a delta 5-3-oxosteroid isomerase from Pseudomonas putida biotype B. J. Biol. Chem. 261: 6454–6460.PubMedGoogle Scholar
  57. Linder, R., 1984, Alteration of mammalian membranes by the cooperative and antagonistic actions of bacterial proteins. Biochim. Biophys. Acta 779: 432–435.Google Scholar
  58. Linder, R., and Bernheimer, A.W., 1982, Enzymatic oxidation of membrane cholesterol in relation to lysis of sheep erythrocytes by corynebacterial enzymes. Arch. Biochem. Biophys. 213: 395–404.PubMedCrossRefGoogle Scholar
  59. Luu The, V., Lachance, Y., Labrie, C., Leblanc, G., Thomas, J.L., Strickler, R.C., and Labrie, F., 1989, Full length cDNA structure and deduced amino acid sequence of human 3 beta-hydroxy-5-ene steroid dehydrogenase. Mol. Endocrinol. 3: 1310–1312.PubMedCrossRefGoogle Scholar
  60. Lyubimov, A.Y., Chen, L., Sampson, N.S., and Vrielink, A., 2009, A hydrogen-bonding network is important for oxidation and isomerization in the reaction catalyzed by cholesterol oxidase. Acta Crystallogr. D 65: 1221–1231.Google Scholar
  61. Lyubimov, A.Y., Heard, K., Tang, H., Sampson, N.S., and Vrielink, A., 2007, Distortion of flavin geometry linked to ligand binding in cholesterol oxidase. Prot. Sci. 16: 2647–2656.CrossRefGoogle Scholar
  62. Lyubimov, A.Y., Lario, P.I., Moustafa, I., and Vrielink, A., 2006, Atomic resolution crystallography reveals how changes in pH shape the protein microenvironment. Nat. Chem. Biol. 2: 259–264.PubMedCrossRefGoogle Scholar
  63. Martin, C.K., 1977, Microbial cleavage of sterol side chains. Adv. Appl. Microbiol. 22: 29–58.PubMedCrossRefGoogle Scholar
  64. Mendes, M.V., Anton, N., Martin, J.F., and Aparicio, J.F., 2005, Characterization of the polyene macrolide P450 epoxidase from Streptomyces natalensis that converts de-epoxypimaricin into pimaricin. Biochem. J. 386: 57–62.PubMedCrossRefGoogle Scholar
  65. Mendes, M.V., Recio, E., Anton, N., Guerra, S.M., Santos-Aberturas, J., Martin, J.F., and Aparicio, J.F., 2007, Cholesterol oxidases act as signaling proteins for the biosynthesis of the polyene macrolide pimaricin. Chem. Biol. 14: 279–290.PubMedCrossRefGoogle Scholar
  66. Mendes, M.V., Recio, E., Fouces, R., Luiten, R., Martin, J.F., and Aparicio, J.F., 2001, Engineered biosynthesis of novel polyenes: a pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis. Chem. Biol. 8: 635–644.PubMedCrossRefGoogle Scholar
  67. Motteran, L., Pilone, M.S., Molla, G., Ghisla, S., and Pollegioni, L., 2001, Cholesterol oxidase from Brevibacterium sterolicum – The relationship between covalent flavinylation and redox properties. J. Biol. Chem. 276: 18024–18030.PubMedCrossRefGoogle Scholar
  68. Moustafa, I., Foster, S., Lyubimov, A.Y., and Vrielink, A., 2006, Crystal structure of LAAO from Calloselasma rhodostoma with an L-phenylalanine substrate: insights into structure and mechanism. J. Mol. Biol. 364: 991–1002.PubMedCrossRefGoogle Scholar
  69. Navas, J., Gonzalez-Zorn, B., Ladron, N., Garrido, P., and Vazquez-Boland, J.A., 2001, Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi. J. Bacteriol. 183: 4796–4805.PubMedCrossRefGoogle Scholar
  70. Ohlsson, I., Nordstrom, B., and Branden, C.I., 1974, Structural and functional similarities within the coenzyme binding domains of dehydrogenases. J. Mol. Biol. 89: 339–354.PubMedCrossRefGoogle Scholar
  71. Ohvo-Rekila, H., Mattjus, P., and Slotte, J.P., 1998, The influence of hydrophobic mismatch on androsterol/phosphatidylcholine interactions in model membranes. Biochim. Biophys. Acta 1372: 331–338.PubMedCrossRefGoogle Scholar
  72. Pandey, A.K., and Sassetti, C.M., 2008, Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl. Acad. Sci. USA 105: 4376–4380.PubMedCrossRefGoogle Scholar
  73. Piubelli, L., Pedotti, M., Molla, G., Feindler-Boeckh, S., Ghisla, S., Pilone, M.S., and Pollegioni, L., 2008, On the oxygen reactivity of flavoprotein oxidases: an oxygen access tunnel and gate in Brevibacterium sterolicum cholesterol oxidase. J. Biol. Chem. 283: 24738–24747.PubMedCrossRefGoogle Scholar
  74. Pollegioni, L., Wels, G., Pilone, M.S., and Ghisla, S., 1999, Kinetic mechanisms of cholesterol oxidase from Streptomyces hygroscopicus and Brevibacterium sterolicum. Eur. J. Biochem. 263: 1–13.CrossRefGoogle Scholar
  75. Purcell, J.P., Greenplate, J.T., Jennings, M.G., Ryerse, J.S., Pershing, J.C., Sims, S.R., Prinsen, M.J., Corbin, D.R., Tran, M., Sammons, R.D., and Stonard, R.J., 1993, Cholesterol oxidase – a potent insecticidal protein active against boll weevil larvae. Biochem. Biophys. Res. Commun. 196: 1406–1413.PubMedCrossRefGoogle Scholar
  76. Richmond, W., 1973, Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin. Chem. 19: 1350–1356.PubMedGoogle Scholar
  77. Richmond, W., 1976, Use of cholesterol oxidase for assay of total and free cholesterol in serum by continuous-flow analysis. Clin. Chem. 22: 1579–1588.PubMedGoogle Scholar
  78. Saam, J., Ivanov, I., Walther, M., Holzhutter, H., and Kuhn, H., 2007, Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels. Proc. Natl. Acad. Sci. USA 104: 13319–13324.PubMedCrossRefGoogle Scholar
  79. Sampson, N.S., Kass, I.J., and Ghoshroy, K.B., 1998, Assessment of the role of an Ω loop of cholesterol oxidase: A truncated loop mutant has altered substrate specificity. Biochemistry 37: 5770–5778.PubMedCrossRefGoogle Scholar
  80. Sauer, L.A., Chapman, J.C., and Dauchy, R.T., 1994, Topology of 3 beta-hydroxy-5-ene-steroid dehydrogenase/delta 5-delta 4-isomerase in adrenal cortex mitochondria and microsomes. Endocrinology 134: 751–759.PubMedCrossRefGoogle Scholar
  81. Sedlaczek, L., 1988, Biotransformations of steroids. Crit. Rev. Biotechnol. 7: 187–236.PubMedCrossRefGoogle Scholar
  82. Slotte, J.P., 1992a, Enzyme-catalyzed oxidation of cholesterol in mixed phospholipid monolayers reveals the stoichiometry at which free cholesterol clusters disappear. Biochemistry 31: 5472–5477.PubMedCrossRefGoogle Scholar
  83. Slotte, J.P., 1992b, Substrate specificity of cholesterol oxidase from Streptomyces cinnamomeus – a monolayer study. J. Steroid Biochem. Mol. Biol. 42: 521–526.PubMedCrossRefGoogle Scholar
  84. Slotte, J.P., 1995, Direct observation of the action of cholesterol oxidase in monolayers. Biochim. Biophys. Acta 1259: 180–186.PubMedGoogle Scholar
  85. Smith, A.G., and Brooks, C.J., 1974, Application of cholesterol oxidase in the analysis of steroids. J. Chromatogr. 101: 373–378.PubMedCrossRefGoogle Scholar
  86. Smith, A.G., and Brooks, C.J., 1975, Studies of the substrate specificity of cholesterol oxidase from Nocardia erythropolis in the oxidation of 3-hydroxy steroids. Biochem. Soc. Trans. 3: 675–677.PubMedGoogle Scholar
  87. Smith, A.G., and Brooks, C.J., 1976, Cholesterol oxidases: properties and applications. J. Steroid Biochem. 7: 705–713.PubMedCrossRefGoogle Scholar
  88. Smith, A.G., and Brooks, C.J., 1977, The substrate specificity and stereochemistry, reversibility and inhibition of the 3-oxo steroid delta 4-delta 5-isomerase component of cholesterol oxidase. Biochem. J. 167: 121–129.PubMedGoogle Scholar
  89. Soulimane, T., Buse, G., Bourenkov, G.P., Bartunik, H.D., Huber, R., and Than, M.E., 2000, Structure and mechanism of the aberrant ba(3)-cytochrome c oxidase from Thermus thermophilus. EMBO J. 19: 1766–1776.PubMedCrossRefGoogle Scholar
  90. Talalay, P., and Wang, V.S., 1955, Enzymic isomerization of delta5-3-ketosteroids. Biochim. Biophys. Acta 18: 300–301.PubMedCrossRefGoogle Scholar
  91. Thomas, J.L., Evans, B.W., Blanco, G., Mercer, R.W., Mason, J.I., Adler, S., Nash, W.E., Isenberg, K.E., and Strickler, R.C., 1998, Site-directed mutagenesis identifies amino acid residues associated with the dehydrogenase and isomerase activities of human type I (placental) 3beta-hydroxysteroid dehydrogenase/isomerase. J. Steroid Biochem. Mol. Biol. 66: 327–334.PubMedCrossRefGoogle Scholar
  92. Uwajima, T., Yagi, H., Nakamurs, S., and Terada, O., 1973, Isolation and crystallization of extracellular 3β-hydroxysteroid oxidase of Brevibacterium sterolicum nov. sp. Agr. Biol. Chem. 37: 2345–2350.Google Scholar
  93. Van Der Geize, R., Yam, K., Heuser, T., Wilbrink, M.H., Hara, H., Anderton, M.C., Sim, E., Dijkhuizen, L., Davies, J.E., Mohn, W.W., and Eltis, L.D., 2007, A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc. Natl. Acad. Sci. USA 104: 1947–1952.PubMedCrossRefGoogle Scholar
  94. Vazquez-Boland, J.A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., Gonzalez-Zorn, B., Wehland, J., and Kreft, J., 2001, Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14: 584–640.PubMedCrossRefGoogle Scholar
  95. Vidal, J.C., Espuelas, J., and Castillo, J.R., 2004, Amperometric cholesterol biosensor based on in situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor. Anal. Biochem. 333: 88–98.PubMedCrossRefGoogle Scholar
  96. Vrielink, A., and Ghisla, S., 2009, Cholesterol oxidase: Biochemistry and structural features. FEBS J. 276: 6826–6843.Google Scholar
  97. Vrielink, A., Lloyd, L.F., and Blow, D.M., 1991, Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 Å resolution. J. Mol. Biol. 219: 533–554.PubMedCrossRefGoogle Scholar
  98. Weinstock, D.M., and Brown, A.E., 2002, Rhodococcus equi: an emerging pathogen. Clin. Infect. Dis. 34: 1379–1385.PubMedCrossRefGoogle Scholar
  99. Wilmanska, D., Dziadek, J., Sajduda, A., Milczarek, K., Jaworski, A., and Murooka, Y., 1995, Identification of cholesterol oxidase from fast-growing Mycobacterial strains and Rhododoccus sp. J. Ferment. Bioeng. 29: 119–124.CrossRefGoogle Scholar
  100. Wilmanska, D., and Sedlaczek, L., 1988, The kinetics of biosynthesis and some properties of an extracellular cholesterol oxidase produced by Arthrobacter sp. IM 79. Acta Microbiol. Polon. 37: 45–51.Google Scholar
  101. Yamashita, M., Toyama, M., Ono, H., Fujii, I., Hirayama, N., and Murooka, Y., 1998, Separation of the two reactions, oxidation and isomerization, catalyzed by Streptomyces cholesterol oxidase. Protein Eng. 11: 1075–1081.PubMedCrossRefGoogle Scholar
  102. Yin, Y., Sampson, N.S., Vrielink, A., and Lario, P.I., 2001, The presence of a hydrogen bond between asparagine 485 and the pi system of FAD modulates the redox potential in the reaction catalyzed by cholesterol oxidase. Biochemistry 40: 13779–13787.PubMedCrossRefGoogle Scholar
  103. Yue, Q.K., Kass, I.J., Sampson, N.S., and Vrielink, A., 1999, Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants. Biochemistry 38: 4277–4286.PubMedCrossRefGoogle Scholar
  104. Zajaczkowska, E., Bartoszko-Tyczkowska, A., and Sedlaczek, L., 1988, Microbiological degradation of sterols. II. Isolation of Rhodococcus sp. IM 58 mutants with a block of the cholesterol degradation pathway. Acta Microbiol. Polon. 37: 39–44.Google Scholar
  105. Zajaczkowska, E., and Sedlaczek, L., 1988, Microbiolgical degradation of sterols. I. Selective induction of enzyme of the cholesterol side chain cleavage in Rhodococcus sp. IM 58. Acta Microbiol. Polon. 37.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Biomedical Biomolecular and Chemical SciencesUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations