Advertisement

Temperature, Seasonal Development and Distribution of Insects with Particular Reference to Aphids

  • Anthony F.G. DixonEmail author
  • Graham W. Hopkins
Chapter

Abstract

That several species of aphids can feed and coexist on the leaves of certain trees is puzzling. Of these aphids some only grow and reproduce actively in spring and autumn, and others only in summer. This temporal patterning in reproductive activity is well documented and common. In the past the summer reproductive diapause in the sycamore aphid was attributed to the low quality of the food available during summer to this and other aphids living on the leaves of deciduous trees. However, the fact that another species belonging to the same genus feeds on the same leaves and is reproductively active during summer indicates that it is unlikely that reproductive diapause in the sycamore aphid is mainly a response to poor food quality. The seasonal trend in temperature is the opposite of that in nutrition, low in spring and autumn and high in summer. A study of five species of aphids coexisting on the leaves of birch indicates that the temporal patterns in their reproductive activity are associated with differences in their thermal tolerances. The thermal tolerance range of each species, their thermal window, is approximately 20°C, with some species better adapted to and therefore reproductively active when temperatures are low in spring and autumn and other species when temperatures are high in summer. Thermal windows of 20°C are not specific to aphids as an analysis of similar data for 66 species from eight orders of insects indicates it is a general phenomenon. In addition, temperate species of aphid, like other poikilotherms, do better at low temperatures than subtropical and tropical species and vice versa. This indicates that it is more likely that a physiological constraint, their thermal windows, determines the seasonal dynamics and distribution of aphids, and also enables several species to coexist.

Keywords

Aphids Coexistence Distribution Food quality Resource partitioning Seasonal dynamics Temperature Thermal tolerance 

Notes

Acknowledgements

It is a pleasure to thank Jonathan Thacker for helpful comments on this paper. AFGD thanks the Leverhulme Trust for the award of an Emeritus Fellowship that made this study possible.

References

  1. Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei Inversion von Rohrzucker durch Sauren. Zeitschrift für Physikalische Chemie 4:226–248Google Scholar
  2. Bale JS (2002) Insects at low temperatures: from molecular biology to distributions and abundance. Philosphical Tran R Soc Lond B 357:849–862CrossRefGoogle Scholar
  3. Bieri M, Baumgärtner J, Bianchi G, Delucchi V, von Arx R (1983) Development and fecundity of pea aphid (Acyrthosiphonn pisum Harris) as affected by constant temperatures and by pea varieties. Mitteilungen der Schweizerischen Entomogischen Gesellschaft 56:163–171Google Scholar
  4. Birkemoe T, Leinaas HP (2000) The effects of temperature on the development of an arctic Collembola (Hypogastrura tullbergi). Funct Ecol 14:693–700CrossRefGoogle Scholar
  5. Bodenheimer FS (1927) Cited in Chapman, R.N. 1931. Animal ecology. McGraw Hill, New YorkGoogle Scholar
  6. Bonnemaison L (1951) Contribution à l’étude des facteurs provoquant l’apparition des formes ailées et sexuées chez leas Aphidinae. Ph.D. Thesis, Paris UniversityGoogle Scholar
  7. Burn AJ (1984) Life cycle strategies in two Antarctic Collembola. Oecologia 64:223–229CrossRefGoogle Scholar
  8. Carroll DP, Hoyt SC (1980) Developmental rate, weight, and ovarian parameters of apple aphids (Homoptera: Aphididae) reared at constant and alternating temperatures. Melandria 44:11–17Google Scholar
  9. Charnov EL, Gillooly JF (2003) Thermal time: body size, food quality and the 10°C rule. Evol Ecol Res 5:43–51Google Scholar
  10. Chick H, Martin CJ (1910) On the “heat coagulation” of proteins. J Physiol 40:404–430PubMedGoogle Scholar
  11. Convey P (1994) Growth and survival strategy of the Antarctic mite Alaskozetes antarcticus. Ecography 17:97–107CrossRefGoogle Scholar
  12. Dewar RC, Watt AD (1992) Predicted changes in the synchrony of larval emergence and budburst under climatic warming. Oecologia 89:557–559Google Scholar
  13. Dixon AFG (1972) Control and significance of the seasonal development of colour forms in the sycamore aphid, Drepanosiphum platanoides (Schr). J Anim Ecol 41:689–697CrossRefGoogle Scholar
  14. Dixon AFG (1973) Metabolic acclimatization to seasonal changes in temperature in the sycamore aphid, Drepanosiphum platanoides (Schr.) and lime aphid, Eucallipterus tiliae L. Oecologia 13:205–210CrossRefGoogle Scholar
  15. Dixon AFG (1976) Timing of egg hatch and viability of the sycamore aphid, Drepanosiphum platanoidis (Schr.), at bud burst of sycamore, Acer pseudoplatanus L. J Anim Ecol 45:593–603CrossRefGoogle Scholar
  16. Dixon AFG (1998) Aphid ecology: an optimization approach, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  17. Dixon AFG (2003) Climate change and phenological asynchrony. Ecol Entomol 28:380–381CrossRefGoogle Scholar
  18. Dixon AFG (2005) Insect herbivore – host dynamics: tree-dwelling aphids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. Dixon AFG, Hon˘ek A, Keil P, Ali M, Kotela A, Šizling AL, Jarošík V (2009) Relationship between the minimum and maximum temperature thresholds for development in insects. Funct Ecol 23:257–264CrossRefGoogle Scholar
  20. Dixon AFG, Jarošík V, Hon˘ek A (2005) Thermal requirements for development and resource partitioning in aphidophagous guilds. Eur J Entomol 102:407–411Google Scholar
  21. El Din NS (1976) Effects of temperature on the aphid, Myzus persicae (Sulz.), with special reference to critically low and high temperature. Zeitschrift für angewandte Entomologie 80:7–14CrossRefGoogle Scholar
  22. Elliott NC, Kieckhefer RW (1989) Effects of constant and fluctuating temperatures on immature development and age specific life-tables of Rhopalosiphum padi L. (Homoptera, Aphididae). Can Entomol 121:131–140CrossRefGoogle Scholar
  23. Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH (2002) Effects of size and temperature on developmental time. Nature 417:70–73CrossRefPubMedGoogle Scholar
  24. Harrington R, Woiwood I, Sparks T (1999) Climate change and trophic interactions. TREE 14:146–150PubMedGoogle Scholar
  25. van der Have TM, de Jong G (1996) Adult size in ectotherms: temperature effects on growth and differentiation. J Theor Biol 185:329–340CrossRefGoogle Scholar
  26. Hirano K, Honda K-I, Miyai S (1996) Effects of temperature on development, longevity and reproduction of the soybean aphid, Aphis glycines (Homoptera: Aphididae). Appl Entomol Zool 31:178–180Google Scholar
  27. Hodkinson ID (2005) Adaptations of invertebrates to terrestrial arctic environments. Det Kongelige Norske Videnskabers Selskab nr. 2:1–44Google Scholar
  28. van’t Hoff JH (1894) Études de dynamique chemique. AmsterdamGoogle Scholar
  29. Hon˘ek A (1996) Geographical variation in thermal requirements for insect development. Eur J Entomol 93:303–312Google Scholar
  30. Hon˘ek A, Kocourek F (1990) Temperature and development time in insects: a general relationship between thermal constants. Zoologische Jahrbücher Systematik 117:401–439Google Scholar
  31. Hopkins GW (1996) Rarity in tree aphids. Ph.D. Thesis, University of East AngliaGoogle Scholar
  32. Komazaki S (1982) Effects of constant temperatures on population growth of three aphid species, Toxoptera citricidis (Kirkaldy), Aphis citricola van der Goot and Aphis gossypii Glover (Homoptera: Aphididae) on Citrus. Appl Entomol Zool 17:75–81Google Scholar
  33. Komazaki S (1986) The inheritance of egg hatching time of the spirea aphid, Aphis citricola van der Goot (Homoptera, Aphididae) on two winter hosts. Kontyû 54:48–53Google Scholar
  34. Kundu R, Dixon AFG (1995) Evolution of complex life cycles. J Anim Ecol 64:245–255CrossRefGoogle Scholar
  35. Lamb RJ (1992) Developmental rate of Acyrthosiphon pisum (Homoptera, Aphididae) at low temperatures – implications for estimating rate parameters for insects. Environ Entomol 21:10–19Google Scholar
  36. Lamb RJ, MacKay PA, Gerber GH (1987) Are development and growth of pea aphids, Acyrthosiphon pisum, in North America adapted to local temperatures. Oecologia 72:170–177CrossRefGoogle Scholar
  37. Liu S-S, Hughes RD (1987) The influence of temperature and photoperiod on the development, survival and reproduction of the sowthistle aphid Hyperomyzus lactucae. Entomol Exp Appl 43:31–38Google Scholar
  38. Liu S, Meng X (1989) The change patter of development rates under constant and variable temperatures in Myzys persicae and Lipaphis erysimi. Acta Ecol Sinica 9:182–190Google Scholar
  39. Liu T-X, Yue B (2000) Effects of constant temperatures on development, survival and reproduction of apterous Lipaphis erysimi (Homoptera: Aphididae) on cabbage. Southwest Entomol 25:91–99Google Scholar
  40. Mordvilko AK (1908) Beitrag zur Biologie der Pflanzenläuse, Aphididae Passerini. Biol Zentralblatt 28:631–639Google Scholar
  41. Nowieski RM, Gutierrez AP, Yaninck JS (1983) Estimation of thermal thresholds and age-specific life table parameters for the walnut aphid (Homoptera: Aphididae) under field conditions. Environ Entomol 12:680–686Google Scholar
  42. Rakauskas R (2004) Recent changes in aphid (Hemiptera, Sternorrhyncha:Aphididae) fauna of Lithuania: an effect of global warming? Ekologija 1:1–4Google Scholar
  43. Reed TD, Semntner PJ (1991) Influence of temperature on population development of two color morphs of the tobacco aphid (Homoptera, Aphididae) on flue-cured tobacco. J Entomol Sci 26:33–38Google Scholar
  44. Rohitha BH, Penman DR (1983) Effect of temperature on the biology of bluegreen lucerne aphid, Acyrthosiphon kondoi. N Z J Zool 10:299–308CrossRefGoogle Scholar
  45. Summers CG, Coviello RL, Gutierrez AP (1984) Influence of constant temperatures on the development and reproduction of Acyrthosiphon kondoi (Homoptera: Aphididae). Environ Entomol 13:236–242Google Scholar
  46. Thieme T, Dixon AFG (2004) The case for aphis solanella being a good species. In: Simon JC, Dedryver CA, Rispe C, Hullé M (eds) Aphids in a new millennium. INRA, Paris, pp 189–194Google Scholar
  47. Trudgill DL (1995) Why do tropical poikilothermic organisms tend to have higher threshold temperatures for development than temperate ones? Funct Ecol 9:136–137Google Scholar
  48. Trudgill DL, Hon˘ek A, Li D, van Straalen NM (2005) Thermal time – concepts and utility. Ann Appl Biol 146:1–14CrossRefGoogle Scholar
  49. Trudgill DL, Perry JN (1994) Thermal time and ecological strategies – a unifying hypothesis. Ann Appl Biol 125:521–532CrossRefGoogle Scholar
  50. Watson SJ (1983) Effects of weather on the numbers of cereal aphids. Ph.D. Thesis, University of East AngliaGoogle Scholar
  51. Watt AD, Woiwood I (1999) The effect of phenological asynchrony on population dynamics: analysis of fluctuations of British macrolepidoptera. Oikos 87:411–416CrossRefGoogle Scholar
  52. Xia J (1997) Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter) cropping systems in China; a simulation study. Ph.D. Thesis, University of WageningenGoogle Scholar
  53. Yamaguchi H (1976) Biological studies on the Todo-fir aphid, Cianara todocola Inouye, with special reference to population dynamics and morph determination. Bulletin of Government Forest Experimental Station No. 283, TokyoGoogle Scholar
  54. de Réaumur RAF (1735) Observation du thérmomètre, faites à Paris pendant l’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’Isle de France, à Alger et en quelquesunes de nos isles de l’Amérique. Mémoires de l’Académie des sciences, Paris 1735:545–576Google Scholar
  55. de Réaumur RAF (1736) Mémoires pour server a l’histoire des insects. 2 vols, ParisGoogle Scholar
  56. van Straalen NM (1994) Adaptive significance of temperature responses in Collembola. Acta Zool Fenn 195:135–142Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Theoretical EcologyInstitute of Systems Biology and Ecology AS CRČeské BudějoviceCzech Republic
  2. 2.University of East AngliaNorwichUK
  3. 3.Invertebrate Surveys LtdNorwichUK

Personalised recommendations