Decentralized Spatial Computing in Urban Environments

  • Patrick Laube
  • Matt Duckham
  • Mike Worboys
  • Tony Joyce
Chapter
Part of the GeoJournal Library book series (GEJL, volume 99)

Abstract

This chapter presents the concept of decentralized spatial computing (DeSC) as a way to embed dynamic spatial data capture and processing capabilities within our built urban environment. The chapter illustrates the potential of DeSC for safeguarding privacy in a dynamic location-based services scenario: Mobile service users protect their potentially sensitive location by the use of a decentralized query algorithms, solely collaborating with peers close by and thereby excluding the privacy bottleneck of an omniscient global service provider. In an extensive set of consecutive experiments several decentralized query algorithms were tested, trading the level of privacy for the quality of service. The use of a real world test bed, – a small part of Ordnance Survey’s OS MasterMap® Integrated Transport Network™ Layer for Southampton – underlines the experiments’ validity. The chapter concludes with a research and development agenda for DeSC in the urban context.

Keywords

Decentralized spatial computing Ambient spatial intelligence Mobile wireless sensor networks Privacy Location-based services 

Notes

Acknowledgments

Patrick Laube was funded by the Australian Research Council (ARC), Discovery grant DP0662906 and the ARC Research Network on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). Matt Duckham’s research was supported by the Australian Research Council under ARC Discovery Grant DP0662906. The authors would furthermore like to thank Ordnance Survey of Great Britain.

References

  1. Bettini, C., Wang, X. & Jajodia, S. (2005). Protecting privacy against location-based personal identification. In W. Jonker & M. Petkovic (Eds.), Secure data management (pp. 185–199). (Heidelberg: Springer)Google Scholar
  2. Braginsky, D. & Estrin, D. (2002). Rumor routing algorthim for sensor networks. In Proceedings of the 1st ACM international workshop on wireless sensor networks and applications (pp. 22–31). (Atlanta, GA: ACM Press)Google Scholar
  3. Cheng, Z., & Heinzelman, W.B. (2005). Flooding strategy for target discovery in wireless networks. Wireless Networks, 11, 607–618CrossRefGoogle Scholar
  4. Dillenburg, J.F., Wolfson, O. & Nelson, P.C. (2002). The intelligent travel assistant. Paper presented at the IEEE 5th International Conference on Intelligent Transportation Systems, SingaporeGoogle Scholar
  5. Dobson, J.E. & Fisher, P.F. (2003). Geoslavery. IEEE Technology and Society Magazine, 22(1), 47–52CrossRefGoogle Scholar
  6. Duckham, M. & Kulik, L. (2005). Simulation of obfuscation and negotiation for location privacy. In A.G. Cohn & D.M. Mark (Eds.), Spatial information theory: international conference, COSIT 2005, Ellicottville, NY, USA, September 14–18, 2005, (pp. 31–48). (Heidelberg: Springer)Google Scholar
  7. Duckham, M., Nittel, S. & Worboys, M.F. (2005). Monitoring dynamic spatial fields using responsive geosensor networks. Paper presented at the ACM GIS, Bremen, GermanyGoogle Scholar
  8. Estrin, D., Govindan, R. & Heidemann, J. (2000). Embedding the internet – introduction. Communications of the ACM, 43(5), (38–41).CrossRefGoogle Scholar
  9. Galton, A. (2001). Space, time, and the representation of geographical reality. Topoi-An International Review of Philosophy, 20(2), (173–187).Google Scholar
  10. Galton, A. (2003). Desiderata for a spatio-temporal geo-ontology. In W. Kuhn, M.F. Worboys & S. Timpf (Eds.), Spatial information theory. foundations of geographic information science: international conference, COSIT 2003, Ittingen, Switzerland, September 24–28 (pp.1-12). (Heidelberg: Springer)Google Scholar
  11. Galton, A. & Worboys, M. (2005). Processes and events in dynamic geo-networks. In M.A. Rodrìguez, I.F. Cruz, M.J. Egenhofer & S. Levashkin (Eds.), Proceedings of first international conference on geospatial semantics (pp. 45–59). (Heidelberg: Springer)Google Scholar
  12. Greenfield, A. (2006). Everyware: the dawning age of ubiquitous computing. (Berkeley: New Riders Press)Google Scholar
  13. Grenon, P. & Smith, B. (2004). SNAP and SPAN: towards dynamic spatial ontology. Spatial cognition and computation, 4(1), 69–103CrossRefGoogle Scholar
  14. Kaasinen, E. (2003). User needs for location-aware mobile services. Personal and Ubiquitous Computing, 7(1), 70–79CrossRefGoogle Scholar
  15. Karp, B. & Kung, H.T. (2000). GPSR: greedy perimeter stateless routing for wireless networks. Paper presented at the Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, Boston, MAGoogle Scholar
  16. Kido, H., Yanagisawa, Y. & Satoh, T. (2005). An anonymous communication technique using dummies for location-based services. Paper presented at the International Conference on Pervasive Services (ICPS '05)Google Scholar
  17. Kosch, T., Adler, C.J., Eichler, S., Schroth, C. & Strassberger, M. (2006). The scalability problem of vehicular ad hoc networks and how to solve it. Wireless Communications, IEEE [see also IEEE Personal Communications], 13(5), 22–28CrossRefGoogle Scholar
  18. Langheinrich, M. (2001). Privacy by design – principles of privacy-aware ubiquitous systems. In G. Abowd, B. Brumitt, & S. Shafer. (Eds.), Ubicomp 2001: ubiquitous computing (pp. 273–291). (New York: Springer)Google Scholar
  19. Laube, P. & Duckham, M. (2009). Decentralized spatial data mining for geosensor networks. In H.J. Miller & J. Han (Eds.), Geographic data mining and knowledge discovery 2nd (pp. 409–430). (London: CRC Press)Google Scholar
  20. Lynch, N. (1996). Distributed algorithms. (San Mateo, CA: Morgan Kaufmann)Google Scholar
  21. Mauve, M., Widmer, A. & Hartenstein, H. (2001). A survey on position-based routing in mobile ad hoc networks. Network, IEEE, 15(6), 30–39CrossRefGoogle Scholar
  22. Nittel, S., Duckham, M. & Kulik, L. (2004a). Information dissemination in mobile ad-hoc geosensor networks. Paper presented at the Geographic Information Science, GIScience, HeidelbergGoogle Scholar
  23. Nittel, S., Stefanidis, A., Cruz, I., Egenhofer, M.J., Goldin, D., Howard, A., Labrinidis, A., Madden, S., Voisard, A, & Worboys, M.F. (2004b). Report from the first workshop on geo sensor networks. ACM SIGMOD Record, 33(1)Google Scholar
  24. Rule, J., McAdam, D., Stearn, L. & Uglow, D. (1980). Politics of privacy, (New York: New American Library)Google Scholar
  25. Stewart Hornsby, K. & Cole, S. (2007). Modeling moving geospatial objects from an event-based perspective. Transactions in GIS, 11(4), 555–573CrossRefGoogle Scholar
  26. Verykios, V.S., Damiani, M.L. & Gkoulalas-Divanis, A. (2008). Privacy and security in spatiotemporal data and trajectories. In F. Giannotti & D. Pedreschi (Eds.), Mobility, data mining and privacy (pp. 213–240). (Heidelberg: Springer)Google Scholar
  27. Winter, S. & Nittel, S. (2006). Ad hoc shared-ride trip planning by mobile geosensor networks. International Journal of Geographical Information Science, 20(8), 899–916CrossRefGoogle Scholar
  28. Worboys, M.F. (2001). Modelling changes and events in dynamic spatial systems with reference to socio-economic units. In A.U. Frank, J. Raper & J.P. Cheylan (Eds.), Life and motion of socio-economic units (pp. 129–137). (London: Taylor & Francis)Google Scholar
  29. Worboys, M.F. (2005). Event-oriented approaches to geographic phenomena. International Journal of Geographical Information Science, 19(1), 1–28CrossRefGoogle Scholar
  30. Worboys, M.F. & Duckham, M. (2006). Monitoring qualitative spatiotemporal change for geosensor networks. International Journal of Geographical Information Science, 20(10), 1087–1108CrossRefGoogle Scholar
  31. Worboys, M.F. & Hornsby, K. (2004). From objects to events: GEM, the geospatial event model. In M.J. Egenhofer, C. Freksa & H. Miller (Eds.), 3rd International conference on geographic information science (GIScience 2004) (pp. 327–343). (Heidelberg: Springer)Google Scholar
  32. Yu, Y., Govindan, R. & Estrin, D. (2001). Geographical and Energy Aware Routing: A Recursive Data Dissemination Protocol for Wireless Sensor Networks (No. UCLA/CSD-TR-01-0023): UCLA Computer Science DepartmentGoogle Scholar
  33. Zhao, F. & Guibas, L.J. (2004). Wireless sensor networks – An information processing approach. (San Francisco, CA: Morgan Kaufmann Publishers)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Patrick Laube
    • 1
  • Matt Duckham
    • 2
  • Mike Worboys
    • 3
  • Tony Joyce
    • 4
  1. 1.Department of GeographyUniversity of ZurichZürichSwitzerland
  2. 2.Geomatics DepartmentThe University of MelbourneMelbourneAustralia
  3. 3.National Center for Geographic Information and Analysis, University of MaineOronoUSA
  4. 4.Ordnance Survey of Great BritainSouthamptonUK

Personalised recommendations