Advertisement

Modeling Cities as Spatio-Temporal Places

  • Xiaobai YaoEmail author
Chapter
Part of the GeoJournal Library book series (GEJL, volume 99)

Abstract

A place exists in a space (footprint) which evolves over a temporal extent (lifeline). This study focuses on those places such as cities or component places within cities (hereafter referred to as city places or simply places). It concerns the modeling and analysis of places from the integrative spatio-temporal perspective. Drawing on recent research development related to spatio-temporal ontology, this study discusses a spatio-temporal ontology specific to city places. The ontology distinguishes between the static view of places (Static-Place) and the dynamic view of spatial-temporal regions led by spatio-temporal processes (ST-Place). The study considers places as spatio-temporal constructs. It proposes the concept of primitive ST region for the construction of spatio-temporal regions and ultimately spatio-temporal places. The study then presents a spatio-temporal data model to link spatial features and the spatio-temporal processes. In this way, the study models an ST-place from a spatio-temporal perspective by forming high dimensional spatio-temporal regions. Based on this conceptual data model, the study further discusses the potential use of this model in spatio-temporal analysis in general and in reasoning spatio-temporal topological relations in particular.

Keywords

Place Spatio-temporal modeling Spatio-temporal region Ontology Spatio-temporal topology 

References

  1. ADL (Alexandria Digital Library) (2007). Gazetteer Server. http://webclient.alexandria.ucsb.edu/. Last Accessed on 12/10/2007.
  2. Agarwal, P. (2005). Operationalising ‘sense of place’ as a cognitive operator for semantics in place-based ontologies. In A.G. Cohn & D.M. Mark (Eds.), Spatial information theory, 7th international conference COSIT (pp. 96–114). (Berlin: Springer)CrossRefGoogle Scholar
  3. Allen, J.F. (1984). Towards a general theory of action and time. Artificial Intelligence, 23(2), 123–154.CrossRefGoogle Scholar
  4. Casey, E.S. (1997). The fate of place. (Berkeley: University of California Press)Google Scholar
  5. Claramunt, C., & Jiang, B. (2001). An integrated representation of spatial and temporal relationships between evolving regions. Journal of geographical systems 3(4), 411–428CrossRefGoogle Scholar
  6. Clementini, E. & Felice, P.D. (1996). An algebraic model for spatial objects with indeterminate boundaries. In P.A. Burrough & A.U. Frank (Eds), Geographic objects with indeterminate boundaries (pp. 155–170). (Bristol, PA: Taylor & Francis)Google Scholar
  7. Cohn, A.G. & Gotts, N.M. (1996). The 'egg-yolk' representation of regions with indeterminate boundaries. In P.A. Burrough & A.U. Frank (Eds.), Geographic objects with indeterminate boundaries (pp. 171–187). (Bristol, PA: Taylor & Francis)Google Scholar
  8. Compieta, P., Di Martino, S., Bertolotto, M., Ferrucci, F. & Kechadi T. (2007). Exploratory spatio-temporal data mining and visualization. Journal of Visual Languages and Computing, 18(3), 255–279CrossRefGoogle Scholar
  9. Egenhofer, M.J., and Franzosa, R. (1991). Point-set Topological Relations. International Journal of Geographical Information Systems, 5(2), 161–174Google Scholar
  10. Galton, A. (2003). Desiderata for a spatio-temporal geo-ontology. In W. Kuhn, M. F. Worboys & S. Timpf (Eds.), Spatial information theory. Foundations of geographic information science. 6th International Conference COSIT (pp. 1–12). (Berlin: Springer)CrossRefGoogle Scholar
  11. Galton, A. & Hood, J. (2005). Anchoring: a new approach to handling indeterminate location in GIS. In A.G. Cohn & D.M. Mark (Eds.), Spatial information theory, 7th international conference COSIT 2005 (pp. 1–13). (Berlin: Springer)Google Scholar
  12. Gazetteer for Scotland. (2009) http://www.geo.ed.ac.uk/scotgaz/gaztitle.html. Last accessed on May, 20, 2009
  13. GNIS (Geographic Names Information System). (2009). Database for feature name query. http://en.wikipedia.org/wiki/Geographic_Names_Information_System. Last accessed on May, 20, 2009
  14. Goodall, B. (Ed.) (1987). The penguin dictionary of human geography. (Harmondsworth: Penguin Books Ltd.)Google Scholar
  15. Goodchild, M.F. (1987). A spatial analytical perspective on geographic information systems. International Journal of Geographic Information Systems, 1, 327–334CrossRefGoogle Scholar
  16. Gould, S.J. (1987). Time's arrow and time's cycle: myth and metaphor in the discovery of geological time. (Cambridge, MA: Harvard University Press)Google Scholar
  17. Grenon, P. & Smith, B. (2004). SNAP and SPAN: towards dynamic spatial ontology. Spatial Cognition and Computation, 4, 69–104CrossRefGoogle Scholar
  18. Guarino, N. & Giaretta, P. (1995). Ontologies and knowledge bases: towards a terminological clarification. In N.J.I. Mars (Ed.), Towards very large knowledge bases (pp. 25–32). (Trento, Italy: IOS Press)Google Scholar
  19. Hägerstrand, T. (1970). What about people in regional science? Paper of the Regional Science Association, 24(1), 7–21CrossRefGoogle Scholar
  20. Hamilton, H.J., Geng, L., Findlater, L. & Randall. D.J. (2006). Efficient spatio-temporal data mining with GenSpace graphs. Journal of Applied Logic, 4(2), 192–214CrossRefGoogle Scholar
  21. Hill, L.L. (2006). Georeferencing: the geographic associations of information. (Cambridge, MA: The MIT Press)Google Scholar
  22. Hornsby, K. & Egenhofer, M.J. (2000). Identity-based change: a foundation for spatio-temporal knowledge representation. International Journal of Geographic Information Science, 14(3), 207–224CrossRefGoogle Scholar
  23. Howarth, J.T., & Couclelis, H. (2005). A linguistics-based framework for modeling spatio-temporal occurrences and purposive change. In A.G. Cohn & D.M. Mark (Eds.), Spatial information theory, 7th international conference COSIT (pp. 316–329). (Berlin: Springer)CrossRefGoogle Scholar
  24. Jordan, T., Raubal, M., Gartrell, B. & Egenhofer, M.J. (1998). An affordance-based model of place in GIS. In T. Poiker & N. Chrisman (Eds.). 8th international symposium on spatial data handling (pp. 98–109). (Vancouver, Canada. International Geographic Union)Google Scholar
  25. Kwan, M.-P. (1998). Space-time and integral measures of Individual accessibility: a comparative analysis using a point-based framework, Geographical Analysis, 30(3), 191–216CrossRefGoogle Scholar
  26. Kwan, M.-P. (2004). GIS methods in time-geographic research: geocomputation and geovisualization of human activity patterns. Geografiska Annaler, Series B: Human Geography, 86(4), 267–280CrossRefGoogle Scholar
  27. Langran, G. (1992). Time in geographic information systems. (London: Taylor & Francis)Google Scholar
  28. Mark, D.M., Egenhofer, M.J., Hirtle, S. & Smith, B. (2000). Ontological foundations for geographic information science 2000 [cited. Available from http://www.ucgis.org/priorities/research/research_white/2000whitepapersindex.htm]
  29. Miller, H.J. (1999). Measuring space-time accessibility benefits within transportation networks: basic theory and computational procedures, Geographical Analysis, 31, 187–212CrossRefGoogle Scholar
  30. Miller, H.J. & Wu, Y.-H. (2000). GIS software for measuring space-time accessibility in transportation planning and analysis, GeoInformatica, 4(2), 141–159CrossRefGoogle Scholar
  31. National GeoOnet Names Server (GNS). by National Geospatial-Intelligence Agency (NGA). http://earth-info.nga.mil/gns/html/index.html. Last accessed on 5/20/2009.
  32. Neutens, T., Witlox, F. Van De Weghe, N. & De Maeyer, P.H. (2007). Space-time opportunities for multiple agents: a constraint-based approach, International Journal of Geographical Information Science, 21(10), 1061–1076CrossRefGoogle Scholar
  33. Parkes, D. & Thrift, N. (1978). In T. Calstein, D. Parkes & N. Thrift (Eds.), Putting time in its place (pp. 119–129). (London: Edward Arnold)Google Scholar
  34. Peuquet, D.J. (1994). It's about time: a conceptual framework for the representation of temporal dynamics in geographic information systems, Annals of the Association of American Geographers, 84 (3), 441–461CrossRefGoogle Scholar
  35. Peuquet, D.J. (2001). Making space for time: issues in space-time data representation. GeoInformatica, 5(1), 11–32CrossRefGoogle Scholar
  36. Peuquet, D.J. & Duan, N. (1995). An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. International Journal of Geographic Information Science, 9, 7–24CrossRefGoogle Scholar
  37. Randell, D.A., Cui, Z. & Cohn, A.G. (1992). A spatial logic based on regions and connection. In B. Bebel, W. Swarthout & C. Rich (Eds.), Proceedings of 3rd international conference on knowledge representation and reasoning (pp. 165–176). (San Francisco: Morgan Kaufmann.)Google Scholar
  38. Relph, E. (1976). Place and placelessness. (London: Pion Limited)Google Scholar
  39. Tuan, Y.-F. (1975). Place: an experiential perspective. The Geographical Review, 65(2), 51–165CrossRefGoogle Scholar
  40. Tuan, Y.-F. (2001). Space and Place: the perspective of experiences. (Minneapolis: University of Minnesota Press)Google Scholar
  41. UNFPA. (2007). State of world population 2007: unleashing the potential of urban growth. Published by UNFPA. 108 pages. Also available on http://www.unfpa.org/public/publications/pid/408 (accessed on 12/1/2009)
  42. Wachowicz, M. (1999). Object-oriented design for temporal GIS. (London: Taylor & Francis)Google Scholar
  43. Wang, D. & Cheng, T. (2001). A spatio-temporal data model for activity-based transport demand modeling, International Journal of Geographical Information Science, 15(6), 561–585CrossRefGoogle Scholar
  44. Worboys, M. (1998). A generic model for spatio-bitemporal geographic information. In M.J. Egenhofer & R.G. Golledge (Eds.), Spatial and temporal reasoning in geographic information systems (pp. 25–39). (Oxford: Oxford University Press)Google Scholar
  45. Worboys, M. (2005). Event-oriented approaches to geographic phenomena, International Journal of Geographical Information Science, 19(1), 1–28CrossRefGoogle Scholar
  46. Worboys, M., & Duckham, M. (2006). Monitoring qualitative spatiotemporal change for geosensor networks. International Journal of Geographical Information Science, 20(10), 1087–1108CrossRefGoogle Scholar
  47. Yu, H., & Shaw, S.L. (2008). Exploring potential human activities in physical and virtual spaces: a spatio-temporal GIS approach. International Journal of Geographical Information Science, 22(4), 409–430CrossRefGoogle Scholar
  48. Yuan, M. (1997). Use of knowledge acquisition to build wildfire representation in geographical information systems. International Journal of Geographic Information Science, 11, 723–745CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of GeographyUniversity of GeorgiaAthensUSA

Personalised recommendations