Advertisement

Food Restriction, Hormones, Genes and Aging

  • Arthur V. Everitt
  • Holly M. Brown-Borg
  • David G. Le Couteur
  • Andrzej Bartke
Chapter

Abstract

Pituitary hormones play an important role in aging and longevity. Hypophysectomy retards aging but shortens life in the rat. However, life-long studies show that when young male Wistar rats aged 60 days are hypophysectomized (HYP) and receive 1 mg cortisone once per week and the same amount of food as food restricted (FR) rats they age more slowly than control (C) or FR rats. HYP rats have the slowest aging in collagen fibre strength, kidney basement membrane thickness, thoracic aorta width, percentage of gross tumors at death and live significantly longer suggesting that ACTH and glucocorticoids may have anti-aging actions. Other pituitary hormones also play key roles in aging. Many studies have focused on growth hormone, IGF-1 and insulin. Deficiencies or perturbations in the expression of other pituitary factors have uncovered roles for thyroid stimulating hormone and luteinizing hormone as well. Study of the interaction of mouse longevity genes with FR have revealed differential responses in endocrine mutants. In Ames dwarfs, FR produced further increases in insulin sensitivity and longevity. In contrast, identical regimen of FR in GHRKO mice did not further augment their insulin sensitivity, did not affect longevity of males and produced a minor increase in maximal longevity of females. These results support the importance of altered insulin signaling in mediating the effects of GH on longevity. Overall, it is clear that pituitary hormones affect age-related physiological processes and longevity. FR alters expression of these hormones thus contributing to delayed aging and lifespan extension observed in FR rodents.

Keywords

Anterior pituitary Cortisone Endocrine mutants Genetic dwarfs Growth hormone Hypophysectomy Insulin-like growth factor 

References

  1. Al-Regaiey, K. A., Masternak, M. M., Bonkowski, M. S., Panici, J. A., Kopchick, J. J. and Bartke, A., 2007. Effects of caloric restriction and growth hormone resistance on insulin-related intermediates in skeletal muscle. J Gerontol A Biol Sci Med Sci 62, 18–26.PubMedCrossRefGoogle Scholar
  2. Al-Regaiey, K. A., Masternak, M. M., Bonkowsky, M., Sun, L. and Bartke, A., 2005. Long-lived growth hormone receptor knockout mice: interaction of reduced insulin-like growth factor-1/insulin signaling and caloric restriction. Endocrinology 146, 851–860.PubMedCrossRefGoogle Scholar
  3. Arking, R., 2006. Senescence as a breakdown of intercellular regulatory processes. In Arking, R. (ed), The Biology of Aging. Observations and Principles, 3rd Edition. Oxford University Press, New York, pp. 449–479.Google Scholar
  4. Armario, A., Montero, J. L. and Jolin, T., 1987. Chronic food restriction and circulating rhythms of pituitary-adrenal hormones, growth hormone and thyroid stimulating hormone. Ann Nutr Metab 31, 81–87.PubMedCrossRefGoogle Scholar
  5. Bartke, A., 1979. Genetic models in the study of anterior pituitary hormones. In Shire, J. G. M. (ed), Genetic Variation in Hormone Systems. CRC Press, Boca Raton, FL.Google Scholar
  6. Bartke, A., 2005. Minireview: role of growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology 146, 3718–3723.PubMedCrossRefGoogle Scholar
  7. Bartke, A., Bonkowski, M. and Masternak, M. M., 2008. How diet interacts with longevity genes. Hormones (Athens) 7, 17–23.Google Scholar
  8. Bartke, A. and Brown-Borg, H., 2004. Life extension in the dwarf mouse.In Current Topics in Development Biology, Vol. 63. Academic Press, San Diego, pp. 189–225.Google Scholar
  9. Bartke, A., Brown-Borg, H. M., Bode, A. M., Carlson, J., Hunter, W. S. and Bronson, R. T., 1998. Does growth hormone prevent or accelerate aging? Exp Gerontol 33, 675–687.PubMedCrossRefGoogle Scholar
  10. Bartke, A., Brown-Borg, H., Mattison, J., Kinney, B., Hauck, S. and Wright, C., 2001a. Prolonged longevity of hypopituitary dwarf mice. Exp Gerontol 36, 21–28.PubMedCrossRefGoogle Scholar
  11. Bartke, A., Coschigano, K., Kopchick, J., Chandrashekar, V., Mattison, J., Kinney, B. and Hauck, S., 2001b. Genes that prolong life: relationships of growth hormone and growth to aging and life span. J Gerontol A Biol Sci Med Sci 56, B340–B349.PubMedCrossRefGoogle Scholar
  12. Bartke, A., Wright, J. C., Mattison, J. A., Ingram, D. K., Miller, E. A. and Roth, G. S., 2001c. Longevity: extending the lifespan of long-lived mice. Nature 414, 412.PubMedCrossRefGoogle Scholar
  13. Berg, B. N. and Simms, H. S., 1960. Nutrition and longevity in the rat. II. Longevity and onset of disease with different levels of food intake. J Nutr 71, 255–263.PubMedGoogle Scholar
  14. Bonkowski, M., 2008. Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Dissertation Southern Illinois University School of Medicine, Springfield, IL.Google Scholar
  15. Bonkowski, M. S., Rocha, J. S., Masternak, M. M., Al-Regaiey, K. A. and Bartke, A., 2006. Targeted disruption of growth hormone receptor interferes with the beneficial actions of caloric restriction. Proc Natl Acad Sci USA 193, 7901–7905.CrossRefGoogle Scholar
  16. Borg, K. E., Brown-Borg, H. M. and Bartke, A., 1995. Assessment of the primary adrenal cortical and pancreatic hormone basal levels in relation to plasma glucose and age in the unstressed Ames dwarf mouse. Proc Soc Exp Biol Med 210, 126–133.PubMedGoogle Scholar
  17. Bowen, R. L. and Atwood, C. S., 2004. Living and dying for sex. A theory of aging based on the modulation of cell cycle signaling by reproductive hormones. Gerontology 50, 265–290.PubMedCrossRefGoogle Scholar
  18. Bowen, R. L., Verdile, G., Liu, T., Parlow, A. F., Perry, G., Smith, M. A., Martins, R. N. and Atwood, C. S., 2004. Luteinizing hormone, a reproductive regulator that modulates the processing of amyloid-β precursor protein and amyloid-β deposition. J Biol Chem 279, 20539–20545.PubMedCrossRefGoogle Scholar
  19. Brown-Borg, H. M., 2009. Hormonal control of aging in rodents: the somatotropic axis. Mol Cell Endocrinol 439, 125–128.Google Scholar
  20. Brown-Borg, H. M., Borg, K. E., Meliska, C. J. and Bartke, A., 1996. Dwarf mice and the ageing process. Nature 384, 33.PubMedCrossRefGoogle Scholar
  21. Campbell, G. A., Kurcz, M., Marshall, S. and Meites, J., 1977. Effects of starvation in rats on serum levels of follicle stimulating hormone, thyrotropin, growth hormone and prolactin: response to LH releasing hormone and thyrotropin releasing hormone. Endocrinology 100, 580–587.PubMedCrossRefGoogle Scholar
  22. Casadesus, G., Milliken, E. L., Webber, K. M., Bowen, R. L., Lei, Z., Rao, C. V., Perry, G., Keri, R. A. and Smith, M. A., 2007. Increases in luteinizing hormone are associated with declines in cognitive performance. Mol Cell Endocrinol 269, 107–111.PubMedCrossRefGoogle Scholar
  23. Coschigano, K. T., Clemmons, D., Bellush, L. L. and Kopchick, J. J., 2000. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141, 2608–2613.PubMedCrossRefGoogle Scholar
  24. Coschigano, K. T., Holland, A. N., Rider, M. E., List, E. O., Flyvbjerg, A. and Kopchick, J. J., 2003. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor-1 levels and increased lifespan. Endocrinology 144, 3799–3810.PubMedCrossRefGoogle Scholar
  25. Donahue, L. R. and Beamer, W. G., 1993. Growth hormone deficiency in “little” mice results in aberrant body composition, reduced insulin-like growth factor-I and insulin-like growth factor-binding protein-3 (IGFBP-3), but does not affect IGFBP-2, –1 or –4. J Endocrinol 136, 91–104.PubMedCrossRefGoogle Scholar
  26. Eicher, E. M. and Beamer, W. G., 1976. Inherited ateliotic dwarfism in mice. Characteristics of the mutation, little, on chromosome 6. J Hered 67, 87–91.PubMedGoogle Scholar
  27. Everitt, A. V., 1971. The hormonal control of ageing and longevity. Proc Aust Assoc Gerontol 1, 127–132.Google Scholar
  28. Everitt, A. V., 1976a. Hypophysectomy and aging in the rat. In Everitt, A. V. and Burgess, J. A. (eds), Hypothalamus, Pituitary and Aging. Charles C. Thomas Publishers, Springfield, IL, pp. 68–85.Google Scholar
  29. Everitt, A. V., 1976b. Cardiovascular aging and the pituitary. In Everitt, A. V. and Burgess, J. A. (eds), Hypothalamus, Pituitary and Aging. Charles C. Thomas Publishers, Springfield, IL, pp. 262–281.Google Scholar
  30. Everitt, A. V., 2003. Food restriction, pituitary hormones and ageing. Biogerontology 4, 161–172.CrossRefGoogle Scholar
  31. Everitt, A. V. and Burgess, J. A., (eds), 1976. Hypothalamus, Pituitary and Aging. Charles C. Thomas Publishers, Springfield, IL.Google Scholar
  32. Everitt, A. V. and Duvall, L. K., 1965. The delayed onset of proteinuria in ageing hypophysectomized rats. Nature 205, 1016.CrossRefGoogle Scholar
  33. Everitt, A. V. and Meites, J., 1989. Minireview: aging and antiaging effects of hormones. J Gerontol 44, B139–B147.PubMedCrossRefGoogle Scholar
  34. Everitt, A. V., Olsen, G. G. and Burrows, G. R., 1968. The effect of hypophysectomy on the aging of collagen fibers in the tail tendon of the rat. J Gerontol 23, 333–336.PubMedCrossRefGoogle Scholar
  35. Everitt, A. V., Porter, B. D. and Wyndham, J. R., 1982. Effects of caloric intake and dietary composition on the development of proteinuria, age-associated renal disease and longevity in the male rat. Gerontology 28, 168–175.PubMedCrossRefGoogle Scholar
  36. Everitt, A. V., Seedsman, N. J. and Jones, F., 1980. The effects of hypophysectomy and continuous food restriction, begun at ages 70 and 400 days, on collagen ageing, proteinuria, incidence of pathology and longevity in the male rat. Mech Ageing Dev 12, 161–172.PubMedCrossRefGoogle Scholar
  37. Everitt, A. V., Shorey, C. D. and Ficarra, M. A., 1985. Skeletal muscle aging in the hind limb of the old male Wistar rat: inhibitory effect of hypophysectomy and food restriction. Arch Gerontol Geriatr 4, 101–115.PubMedCrossRefGoogle Scholar
  38. Everitt, A. V. and Wyndham, J., 1982. Hypothalamic-pituitary regulation and aging. In Adelman, R. C., Roth, G. S. (eds), Endocrine and Neuroendocrine Mechanisms of Aging. CRC Press, Boca Raton, FL, pp. 123–165.Google Scholar
  39. Flurkey, K., Papaconstantinou, J. and Harrison, D. E., 2002. The Snell dwarf mutation Pit(dw) can increase lifespan in mice. Mech Ageing Dev 123, 121–130.PubMedCrossRefGoogle Scholar
  40. Flurkey, K., Papaconstantinou, J., Miller, R. and Harrison, D. E., 2001. Lifespan extension and delayed immune and collagen aging in mutant with mice effects in growth hormone production. Proc Natl Acad Sci 98, 6736–6741.PubMedCrossRefGoogle Scholar
  41. Friedman, S. M., Nakashima, M. and Friedman, C. L., 1965. Prolongation of lifespan in the old rat by adrenal and neurohypophyseal hormones. Gerontologia 11, 129–140.PubMedCrossRefGoogle Scholar
  42. Gautsch, T. A., Kandl, S. M., Donovan, S. M. and Layman, D. K., 1998. Response of the IGF-1 system to prolonged undernutrition and its involvement in somatic and skeletal muscle retardation in rats. Growth Dev Aging 62, 13–25.PubMedGoogle Scholar
  43. Genedani, S., Filaferro, M., Carone, C., Ostan, R., Bucci, L., Cevenini, E., Franceschi, C. and Monti, D., 2008. Influence of f-MLP, ACTH(1-24) and CRH on in vitro chemotaxis of monocytes from centenarians. Neuroimmunomodulation 15, 285–289.PubMedCrossRefGoogle Scholar
  44. Giani, J. F., Bonkowski, M. S., Munoz, M. C., Masternak, M. M., Turyn, D., Bartke, A. and Dominici, F. P., 2008. Insulin signalling cascade in the hearts of long-lived growth hormone receptor knockout mice: effects of calorie restriction. J Gerontol A Biol Sci Med Sci 63(8 ), 788–797.PubMedCrossRefGoogle Scholar
  45. Han, E. S., Evans, T. R., Shu, J. H., Lee, S. and Nelson, J. F., 2001. Food restriction enhances endogenous and corticotropin-induced plasma elevations of free but not total corticosterone throughout life in rats. J Gerontol A Biol Sci Med Sci 56, B391–B397.PubMedCrossRefGoogle Scholar
  46. Han, E. S., Levin, N., Bengani, N., Roberts, J. L., Suh, Y., Karelus, K. and Nelson, J. F., 1995. Hyperadrenocorticism and food restriction-induced life extension in the rat: evidence for divergent regulation of pituitary propiomelanocortin RNA and adrenocorticotropic hormone biosynthesis. J Gerontol A Biol Sci Med Sci 50, B288–B294.PubMedCrossRefGoogle Scholar
  47. Harman, D., 1988. Free radicals in aging. Mol Cell Biochem 84, 155–161.PubMedCrossRefGoogle Scholar
  48. Harrison, D. E., Archer, J. R. and Astle, C. M., 1982. The effect of hypophysectomy on thymic aging in mice. J Immunol 129, 2673–2677.PubMedGoogle Scholar
  49. Herlihy, J. T., Stacy, C. and Bertrand, H. A., 1990. Long-term food restriction depresses serum thyroid hormone concentration in the rat. Mech Ageing Dev 53, 9–16.PubMedCrossRefGoogle Scholar
  50. Johnson, J. E., Jr. and Cutler, R. G., 1980. Effects of hypophysectomy on age-related changes in the rat kidney glomerulus: observations by scanning and transmission electron microscopy. Mech Ageing Dev 13, 63–74.PubMedCrossRefGoogle Scholar
  51. LaPensee, C. R., Horseman, N. D., Tso, P., Brandebourg, T. D., Hugo, E. R. and Ben-Jonathan, N., 2006. The prolactin-deficient mouse has an unaltered metabolic phenotype. Endocrinology 14, 4638–4645.CrossRefGoogle Scholar
  52. Mann, R. J., Keri, R. A. and Nilson, J. H., 2003. Consequences of elevated luteinizing hormone on diverse physiological systems: use of the LH beta CTP transgenic mouse as a model of ovarian hyperstimulation-induced pathophysiology. Recent Prog Horm Res 58, 343–375.PubMedCrossRefGoogle Scholar
  53. Masoro, E. J., 1998. Hormesis and the antiaging action of dietary restriction. Exp Gerontol 33, 61–66.PubMedCrossRefGoogle Scholar
  54. Masoro, E. J., 2001. Dietary restriction: an experimental approach to the study of the biology of aging. In Masoro E. J. and Austad, S. N. (eds), Handbook of the Biology of Aging, 5th Edition. Academic Press, San Diego, pp. 396–420.Google Scholar
  55. Masoro, E. J., 2002. Caloric restriction: a key to understanding and modulating aging. Elsevier, Amsterdam.Google Scholar
  56. Masoro, E. J., 2005. Overview of caloric restriction and ageing. Mech Ageing Dev 126, 913–922.PubMedCrossRefGoogle Scholar
  57. Masoro, E. J., 2007. The role of hormesis in life extension by dietary restriction. Interdiscip Topics Gerontol 35, 1–17.Google Scholar
  58. Masternak, M. M., Al-Regaiey, K. A., Del Rosario Lim, M. M., Jimenez-Ortega, V., Panici, J. A., Bonkowski, M. S., Kopchick, J. J., Wang, Z. and Bartke, A., 2006. Calorie restriction and growth hormone receptor knockout. Effects on expression of genes involved in insulin action in the heart. Exp Gerontol 41, 417–429.PubMedCrossRefGoogle Scholar
  59. Mattison, J. A., Wright, J. C., Bronson, R. T., Roth, G. S., Ingram, D. K. and Bartke, A., 2000. Studies of aging in Ames dwarf mice: effects of caloric restriction. J Am Aging Assoc 23, 9–16.Google Scholar
  60. McCay, C. M., Crowell, M. F. and Maynard, L. A., 1935. The effect of retarded growth upon length of the lifespan and upon ultimate body size. J Nutr 10, 63–79.Google Scholar
  61. McEwen, B. S., 2001. Invited review: estrogens effects on the brain: multiple sites and molecular mechanisms. J Appl Phys 91, 2785–2801.Google Scholar
  62. Meydani, M., 2001. Nutrition interventions in aging and age-associated disease. Ann NY Acad Sci 928, 226–235.PubMedCrossRefGoogle Scholar
  63. Mobbs, C. V., Bray, G. A., Atkinson, R. L., Bartke, A., Finch, C. E., Maratos-Flier, E., Crawley, J. N. and Nelson, J. F., 2001. Neuroendocrine and pharmacological manipulations to assess how caloric restriction increases lifespan. J Gerontol A Biol Sci Med Sci 56, B34–B44.CrossRefGoogle Scholar
  64. Mulinos, M. G. and Pomerantz, L., 1940. Pseudo-hypophysectomy and condition resembling hypophysectomy produced by malnutrition. J Nutr 19, 493–504.Google Scholar
  65. Ooka, H., Fujita, S. and Yoshimoto, E., 1983. Pituitary-thyroid activity and longevity in neonatally thyroxine-treated rats. Mech Age Dev 22, 113–120.CrossRefGoogle Scholar
  66. Ooka, H. and Shinkai, T., 1986. Effects of hyperthyroidism on the life span of the rat. Mech Age Dev 33, 275–282.CrossRefGoogle Scholar
  67. Piper, M. D. and Bartke, A., 2008. Diet and aging. Cell Metab 8, 99–104.PubMedCrossRefGoogle Scholar
  68. Polidori, M. C., 2003. Antioxidant micronutrients in prevention of age-related diseases. J Postgrad Med 49, 229–235.PubMedGoogle Scholar
  69. Powers, R. W., 3rd, Harrison, D. E. and Flurkey, K., 2006. Pituitary removal in adult mice increases lifespan. Mech Ageing Dev 127, 658–659.PubMedCrossRefGoogle Scholar
  70. Rattan, S. I. S., 2008. Hormesis in aging. Ageing Res Rev 7, 63–78.PubMedCrossRefGoogle Scholar
  71. Roth, G. S., Lane, M., Ingram, D. K., Mattison, J., Elahi, D., Tobin, J. D., Muller, D. and Metter, E. J., 2002. Biomarkers of caloric restriction may predict longevity in humans. Science 297, 811.PubMedCrossRefGoogle Scholar
  72. Shorey, C. D., Everitt, A. V., Armstrong, R. A. and Manning, L. A., 1993. Morphometric analysis of the muscle fibres of the soleus muscle of the ageing rat: long-term effect of hypophysectomy and food restriction. Gerontology 39, 80–92.PubMedCrossRefGoogle Scholar
  73. Stern, J. S., Gades, M. D., Wheeldon, C. M. and Borchers, A. T., 2001. Calorie restriction in obesity: prevention of kidney disease in rodents. J Nutr 131, 913S–917S.PubMedGoogle Scholar
  74. Vergara, M., Smith-Wheelock, M., Harper, J. M., Sigler, R. and Miller, R. A., 2004. Hormone-treated Snell dwarf mice regain fertility but remain long-lived and disease resistant. J Gerontol A Biol Sci Med Sc 59, 1244–1250.CrossRefGoogle Scholar
  75. Webber, K. M., Casadesus, G., Atwood, C. S., Bowen, R. L., Perry, G. and Smith, M. A., 2007. Gonadotropins: a cohesive gender-based etiology of Alzheimer disease. Mol Cell Endo 260–262, 271–275.CrossRefGoogle Scholar
  76. Webber, K. M., Stocco, D. M., Casadesus, G., Bowen, R. L., Atwood, C. S., Previll, L. A., Harris, P. L., Zhu, X., Perry, G. and Smith, M. A., 2006. Steroidogenic acute regulatory protein (StAR): evidence of gonadotropin-induced steroidogenesis in Alzheimer disease. Mol Neurodegener 3, 1–14.CrossRefGoogle Scholar
  77. Weindruch, R. and Sohal, R. S., 1997. Seminars in medicine of the Beth Israel deaconess medical center. Caloric intake and aging. N Engl J Med 337, 986–994.PubMedCrossRefGoogle Scholar
  78. Weindruch, R. and Walford, R. L., 1982. Dietary restriction in mice beginning at 1 year of age: effect on lifespan and spontaneous cancer incidence. Science 215, 1415–1418.PubMedCrossRefGoogle Scholar
  79. Weindruch, R. and Walford, R. L., 1988a. Retardation of Aging and Disease by Dietary Restriction. CC Thomas, Springfield, IL.Google Scholar
  80. Weindruch, R. and Walford, R. L., 1988b. How does dietary restriction retard aging? In Weindruch, R. and Walford, R. L. (eds), The Retardation of Aging and Disease by Dietary Restriction. CC Thomas, Springfield, IL, pp. 231-294.Google Scholar
  81. Wyndham, J. R., Everitt, A. V., Eyland, A. and Major, J., 1987. Inhibitory effect of hypophysectomy and food restriction on glomerular basement membrane thickening, proteinuria and renal enlargement in ageing male Wistar rats. Arch Gerontol Geriatr 6, 323–337.PubMedCrossRefGoogle Scholar
  82. Yu, B. P., 1994. Modulation of Aging Processes by Dietary Restriction. CRC Press, Boca Raton, FL.Google Scholar
  83. Zhou, Y., Xu, B. C., Maheshwari, H. G., He, L., Reed, M., Lozykowski, M., Okada, S., Wagner, T. E., Cataldo, L. A., Coschigano, K., Baumann, G. and Kopchick, J. J., 1997. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (The Laron mouse). Proc Nat Acad Sci USA 94, 13215–13220.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Arthur V. Everitt
    • 1
    • 2
  • Holly M. Brown-Borg
    • 3
  • David G. Le Couteur
    • 4
  • Andrzej Bartke
    • 5
  1. 1.Centre for Education and Research on AgeingConcord RG Hospital, The University of SydneyConcordAustralia
  2. 2.Discipline of Physiology, School of Medical SciencesThe University of SydneySydneyAustralia
  3. 3.Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksUSA
  4. 4.ANZAC Research Institute, Centre for Education and Research on AgeingConcord RG Hospital, The University of SydneySydneyAustralia
  5. 5.Geriatrics Research, Departments of Internal Medicine and Physiology, School of MedicineSouthern Illinois UniversitySpringfieldUSA

Personalised recommendations