Skip to main content

Diversity, Structure, and Evolution of the Termite Gut Microbial Community

  • Chapter
  • First Online:

Abstract

The gut of termites is densely populated with microbial symbionts that aid in the efficient digestion of recalcitrant lignocellulose. Despite the formidable unculturability of the resident members, ribosomal RNA-based molecular analyses and other comprehensive and elaborate culture-independent studies of molecular microbial ecology in the past decade have gradually unveiled the complex nature of the intestinal microbiota. The microbial community, whose structure and spatial distribution seems to be characteristic for a termite species (but may differ between genera), consists of mostly novel lineages that seem to have co-evolved or converged with their particular host. A prominent feature of lower termites is the tripartite symbiosis with a variety of flagellated protists that are themselves associated with diverse prokaryotes. Here, the complete genome sequences of several bacterial endosymbionts have disclosed their functional interactions with their host flagellates, but the highly structured and coevolving nature of these associations requires more emphasis in future studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe T, Bignell DE, Higashi M (eds) (2000) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Adl SM, Simpson AGB, Farmer MA et al (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Berchtold M, Chatzinotas A, Schönhuber W et al (1999) Differential enumeration and in situ localization of micro-organisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Arch Microbiol 172:407–416

    Article  PubMed  CAS  Google Scholar 

  • Berchtold M, König H (1995) Phylogenetic position of the two uncultivated trichomonads Pentatrichomonoides scroa Kirby and Metadevescovina extranea Kirby from the hindgut of the termite Mastotermes darwiniensis Froggatt. Syst Appl Microbiol 18:567–573

    Article  Google Scholar 

  • Berchtold M, König H (1996) Phylogenetic analysis and in situ identification of uncultivated spirochetes from the hindgut of the termite Mastotermes darwiniensis. Syst Appl Microbiol 19:66–73

    Article  Google Scholar 

  • Berchtold M, Ludwig W, König H (1994) 16S rDNA sequence and phylogenetic position of an uncultivated spirochete from the hindgut of the termite Mastotermes darwiniensis Froggatt. FEMS Microbiol Lett 123:269–273

    Article  PubMed  CAS  Google Scholar 

  • Berlanga M, Paster BJ, Guerrero R (2007) Coevolution of symbiotic spirochete diversity in lower termites. Int Microbiol 10:133–139

    PubMed  CAS  Google Scholar 

  • Brauman A, Dore J, Eggleton P et al (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36

    Article  PubMed  CAS  Google Scholar 

  • Brugerolle G, Patterson DJ (2001) Ultrastructure of Joenina pulchella Grassi, 1917 (Protista, Parabasalia), a reassessment of evolutionary trends in the parabasalids, and a new order Cristamonadida for devescovinid, calonymphid and lophomonad flagellates. Org Divers Evol 1:147–160

    Article  Google Scholar 

  • Brugerolle G, Radek R (2006) Symbiotic protozoa of termites In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 243–269

    Chapter  Google Scholar 

  • Brune A (1998) Termite guts: the world’s smallest bioreactors. Trends Biotechnol 16:16–21

    Article  CAS  Google Scholar 

  • Brune A (2006) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes, vol 1, 3rd edn. Symbiotic associations, biotechnology, applied microbiology, Springer, New York, NY, pp 439–474

    Chapter  Google Scholar 

  • Brune A (2007) Woodworker’s digest. Nature 450:487–488

    Article  PubMed  CAS  Google Scholar 

  • Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269

    Article  PubMed  CAS  Google Scholar 

  • Brune A, Stingl U (2005) Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. In: Overmann J (ed) Molecular basis of symbiosis. Springer, Berlin, pp 39–60

    Google Scholar 

  • Carpenter KJ, Chow L, Keeling PJ (2009) Morphology, phylogeny, and diversity of Trichonympha (Parabasalia: Hypermastigida) of the wood-feeding cockroach Cryptocercus punctulatus. J Eukaryot Microbiol 56:305–313

    Article  PubMed  CAS  Google Scholar 

  • Carpenter KJ, Horak A, Keeling PJ (2010) Phylogenetic position and morphology of Spirotrichosomidae (Parabasalia): new evidence from Leptospironympha of Cryptocercus punctulatus. Protist 161:122–132

    Article  PubMed  CAS  Google Scholar 

  • Carpenter KJ, Keeling PJ (2007) Morphology and phylogenetic position of Eucomonympha imla (Parabasalia: Hypermastigida). J Eukaryot Microbiol 54:325–332

    Article  PubMed  CAS  Google Scholar 

  • Carpenter KJ, Waller RF, Keeling PJ (2008) Surface morphology of Saccinobaculus (Oxymonadida): implications for character evolution and function in oxymonads. Protist 159:209–221

    Article  PubMed  Google Scholar 

  • Dacks JB, Redfield RJ (1998) Phylogenetic placement of Trichonympha. J Eukaryot Microbiol 45:445–447

    Article  PubMed  CAS  Google Scholar 

  • Dacks JB, Silberman JD, Simpson AGB et al (2001) Oxymonads are closely related to the excavate taxon Trimastix. Mol Biol Evol 18:1034–1044

    Article  PubMed  CAS  Google Scholar 

  • Deevong P, Hongoh Y, Inoue T et al (2006) Effect of temporal sample preservation on the molecular study of a complex microbial community in the gut of the termite Microcerotermes sp. Microbes Environ 21:78–85

    Article  Google Scholar 

  • de Koning AP, Noble GP, Heiss AA et al (2008) Environmental PCR survey to determine the distribution of a non-canonical genetic code in uncultivable oxymonads. Environ Microbiol 10:65–74

    PubMed  Google Scholar 

  • Desai MS, Strassert JFH, Meuser K et al (2010) Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ Microbiol 12:2120–2132

    PubMed  CAS  Google Scholar 

  • Dolan MF (2001) Speciation of termite gut protists: the role of bacterial symbionts. Int Microbiol 4:203–208

    Article  PubMed  CAS  Google Scholar 

  • Donovan SE, Purdy KJ, Kane MD, Eggleton P (2005) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892

    Article  CAS  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    Article  PubMed  CAS  Google Scholar 

  • Fall S, Hamelin J, Ndiaye F et al (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds. Appl Environ Microbiol 73:5199–5208

    Article  PubMed  CAS  Google Scholar 

  • Fall S, Nazaret S, Chotte JL, Brauman A (2004) Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds. Microb Ecol 28:191–199

    Article  Google Scholar 

  • Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890

    Article  PubMed  CAS  Google Scholar 

  • Fröhlich J, König H (1999) Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. Syst Appl Microbiol 22:249–257

    Article  PubMed  Google Scholar 

  • Geissinger O, Herlemann DPR, Mörschel E et al (2009) The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the termite group I phylum. Appl Environ Microbiol 75:2831–2840

    Article  PubMed  CAS  Google Scholar 

  • Gerbod D, Noël C, Dolan MF et al (2002) Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Devescovinidae and Calonymphidae (Trichomonadea) Mol Phylogenet Evol 25:545–556

    Article  PubMed  CAS  Google Scholar 

  • Gerbod D, Sanders E, Moriya S et al (2004) Molecular phylogenies of Parabasalia inferred from four protein genes and comparison with rRNA trees. Mol Phylogenet Evol 31:572–580

    Article  PubMed  CAS  Google Scholar 

  • Godon JJ, Morinière J, Moletta M et al (2005) Rarity associated with specific ecological niches in the bacterial world: the ‘Synergistes’ example. Environ Microbiol 7:213–224

    Article  PubMed  CAS  Google Scholar 

  • Hampl V, Cepicka I, Flegr J et al (2004) Critical analysis of the topology and rooting of the parabasalian 16S rRNA tree. Mol Phylogenet Evol 32:711–723

    Article  PubMed  CAS  Google Scholar 

  • Hampl V, Hug L, Leigh JW et al (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA 106:3859–3864

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Shinzato N, Ohshima T, Yamagishi A (2004) Endosymbiotic Methanobrevibacter species living in symbiotic protists of the termite Reticulitermes speratus detected by fluorescent in situ hybridization. Microbes Environ 19:120–127

    Article  Google Scholar 

  • Hara K, Shinzato N, Seo M et al (2002) Phylogenetic analysis of symbiotic Archaea living in the gut of xylophagous cockroaches. Microbes Environ 17:185–190

    Article  Google Scholar 

  • Harper JT, Gile GH, James ER et al (2009) The inadequacy of morphology for species and genus delineation in microbial eukaryotes: an example from the parabasalian termite symbiont Coronympha. PLoS One 4:e6577

    Article  PubMed  CAS  Google Scholar 

  • Hayashi A, Aoyagi H, Yoshimura T, Tanaka H (2007) Development of novel method for screening microorganisms using symbiotic association between insect (Coptotermes formosanus Shiraki) and intestinal microorganisms. J Biosci Bioeng 103:358–367

    Article  PubMed  CAS  Google Scholar 

  • Heiss AA, Keeling PJ (2006) The phylogenetic position of the oxymonad Saccinobaculus based on SSU rRNA. Protist 157:335–344

    Article  PubMed  CAS  Google Scholar 

  • Herlemann DPR, Geissinger O, Brune A (2007) The termite group I phylum is highly diverse and widespread in the environment. Appl Environ Microbiol 73:6682–6685

    Article  PubMed  CAS  Google Scholar 

  • Herlemann DPR, Geissinger O, Ikeda-Ohtsubo W et al (2009) Genome analysis of “Elusimicrobium minutum,” the first cultivated representative of the phylum “Elusimicrobia” (formerly Termite Group 1). Appl Environ Microbiol 75:2841–2849

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Deevong P, Hattori S et al (2006a) Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 72:6780–6788

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Deevong P, Inoue T et al (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Ekpornprasit L, Inoue T et al (2006b) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Ohkuma M (2010) Termite gut flagellates and their methanogenic and eubacterial symbionts. In: Hackstein JHP (ed) Microbiology monographs: (endo) symbiotic methanogenic archaea. Springer, Berlin, Heidelberg, in press

    Google Scholar 

  • Hongoh Y, Ohkuma M, Kudo T (2003a) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Sato T, Dolan MF et al (2007a) The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the “Synergistes” group. Appl Environ Microbiol 73:6270–6276

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Sato T, Noda S et al (2007b) Candidatus Symbiothrix dinenymphae: bristle-like Bacteroidales ectosymbionts of termite gut protists. Environ Microbiol 9:2631–2635

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Sharma VK, Prakash T et al (2008a) Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc Natl Acad Sci USA 105:5555–5560

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Sharma VK, Prakash T et al (2008b) Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108–1109

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Yuzawa H, Ohkuma M, Kudo T (2003b) Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol Lett 221:299–304

    Article  PubMed  CAS  Google Scholar 

  • Iida T, Ohkuma M, Ohtoko K, Kudo T (2000) Symbiotic spirochetes in the termite hindgut: phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiol Ecol 34:17–26

    Article  PubMed  CAS  Google Scholar 

  • Ikeda-Ohtsubo W, Brune A (2009) Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and ‘Candidatus Endomicrobium trichonymphae’. Mol Ecol 18:332–342

    Article  PubMed  CAS  Google Scholar 

  • Ikeda-Ohtsubo W, Desai M, Stingl U, Brune A (2007) Phylogenetic diversity of ‘Endomicrobia’ and their specific affiliation with termite gut flagellates. Microbiology 153:3458–3465

    Article  PubMed  CAS  Google Scholar 

  • Ikeda-Ohtsubo W, Faivre N, Brune A (2010) Putatively free-living “Endomicrobia” – ancestors of the intracellular symbionts of termite gut flagellates? Environ Microbiol Rep. 2:554–559

    Article  Google Scholar 

  • Inoue T, Moriya S, Ohkuma M, Kudo T (2005) Molecular cloning and characterization of a cellulase gene from a symbiotic protist of the lower termite, Coptotermes formosanus. Gene 349:67–75

    Article  PubMed  CAS  Google Scholar 

  • Inoue JI, Noda S, Hongoh Y et al (2008) Identification of endosymbiotic methanogen and ectosymbiotic spirochetes of gut protists of the termite Coptotermes formosanus. Microbes Environ 23:94–97

    Article  PubMed  Google Scholar 

  • Inoue JI, Saita K, Kudo T et al (2007) Hydrogen production by termite gut protists: characterization of iron hydrogenases of parabasalian symbionts of the termite Coptotermes formosanus. Eukaryot Cell 6:1925–1932

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2002) Molecular phylogenetic position of Trichomitopsis termopsidis (Parabasalia) and evidence for the Trichomitopsiinae. Eur J Protistol 38:279–286

    Article  Google Scholar 

  • Keeling PJ (2004) Polymorphic insertions and deletions in parabasalian enolase genes. J Mol Evol 58:550–556

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Leander BS (2003) Characterisation of a non-canonical genetic code in the oxymonad Streblomastix strix. J Mol Biol 326:1337–1349

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Poulsen N, Mcfadden GI (1998) Phylogenetic diversity of parabasalian symbionts from termites, including the phylogenetic position of Pseudotrypanosoma and Trichonympha. J Eukaryot Microbiol 45:643–650

    Article  PubMed  CAS  Google Scholar 

  • Kitade O (2004) Comparison of symbiotic flagellate faunae between termites and a wood-feeding cockroach of the genus Cryptocercus. Microbes Environ 19:215–220

    Article  Google Scholar 

  • Köhler T, Stingl U, Meuser K, Brune A (2008) Novel lineages of Planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp). Environ Microbiol 10:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • Leander BS, Keeling PJ (2004) Symbiotic innovation in the oxymonad Streblomastix strix. J Eukaryot Microbiol 51:291–300

    Article  PubMed  Google Scholar 

  • Lefebvre T, Miambi E, Pando A et al (2009) Gut-specific actinobacterial community structure and diversity associated with the wood-feeding termite species, Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis. Insect Soc 56:269–276

    Article  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  PubMed  CAS  Google Scholar 

  • Li L, Fröhlich J, Pfeiffer P, König H (2003) Termite gut symbiotic Archaezoa are becoming living metabolic fossils. Eukaryot Cell 2:1091–1098

    Article  PubMed  CAS  Google Scholar 

  • Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Tokuda G, Watanabe H et al (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804

    Article  PubMed  CAS  Google Scholar 

  • Minkley N, Fujita A, Brune A, Kirchner WH (2006) Nest specificity of the bacterial community in termite guts (Hodotermes mossambicus). Insect Soc 53:339–344

    Article  Google Scholar 

  • Miyata R, Noda N, Tamaki H et al (2007a) Phylogenetic relationship of symbiotic Archaea in the gut of the higher termite Nasutitermes takasagoensis fed with various carbon sources. Microbes Environ 22:157–164

    Article  Google Scholar 

  • Miyata R, Noda N, Tamaki H et al (2007b) Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotechnol Biochem 71:1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Moriya S, Dacks JB, Takagi A et al (2003) Molecular phylogeny of three oxymonad genera: Pyrsonympha, Dinenympha and Oxymonas. J Eukaryot Microbiol 50:190–197

    Article  PubMed  Google Scholar 

  • Moriya S, Ohkuma M, Kudo T (1998) Phylogenetic position of symbiotic protist Dinenympha exilis in the hindgut of the termite Reticulitermes speratus inferred from the protein phylogeny of elongation factor 1 alpha. Gene 210:221–227

    Article  PubMed  CAS  Google Scholar 

  • Moriya S, Tanaka K, Ohkuma M et al (2001) Diversification of the microtubule system in the early stage of eukaryote evolution: elongation factor 1 alpha and alpha-tubulin protein phylogeny of termite symbiotic oxymonad and hypermastigote protists. J Mol Evol 52:6–16

    PubMed  CAS  Google Scholar 

  • Nakajima H, Hongoh Y, Noda S et al (2006) Phylogenetic and morphological diversity of Bacteroidales members associated with the gut wall of termites. Biosci Biotech Biochem 70:211–218

    Article  CAS  Google Scholar 

  • Nakajima H, Hongoh Y, Usami R et al (2005) Spatial distribution of bacterial phylotypes in the gut of the termite Reticulitermes speratus and the bacterial community colonizing the gut epithelium. FEMS Microbiol Ecol 54:247–255

    Article  PubMed  CAS  Google Scholar 

  • Nakashima KI, Watanabe H, Azuma JI (2002) Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus. Cell Mol Life Sci 59:1554–1560

    Article  PubMed  CAS  Google Scholar 

  • Nalepa CA, Bignell DE, Bandi C (2001) Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48:194–201

    Article  Google Scholar 

  • Noda S, Hongoh Y, Sato T, Ohkuma M (2009a) Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol Biol 9:158

    Article  PubMed  CAS  Google Scholar 

  • Noda S, Iida T, Kitade S et al (2005) Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite Coptotermes formosanus. Appl Environ Microbiol 71:8811–8817

    Article  PubMed  CAS  Google Scholar 

  • Noda S, Inoue T, Hongoh Y et al (2006a) Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 8:11–20

    Article  PubMed  CAS  Google Scholar 

  • Noda S, Kawai M, Nakajima H et al (2006b) Identification and in situ detection of two lineages of Bacteroidales ectosymbionts associated with a termite gut protist, Oxymonas sp. Microbes Environ 21:16–22

    Article  Google Scholar 

  • Noda S, Kitade O, Inoue T et al (2007) Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol Ecol 16:1257–1266

    Article  PubMed  CAS  Google Scholar 

  • Noda S, Mantini C, Bordereau C et al (2009b) Molecular phylogeny of parabasalids with emphasis on the order Cristamonadida and its complex morphological evolution. Mol Phylogenet Evol 52:217–224

    Article  PubMed  CAS  Google Scholar 

  • Noda S, Ohkuma M, Yamada A et al (2003) Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Appl Environ Microbiol 69:625–633

    Article  PubMed  CAS  Google Scholar 

  • Noël C, Noda S, Mantini C et al (2007) Molecular phylogenetic position of the genera Stephanonympha and Caduceia (Parabasalia) inferred from nuclear small subunit rRNA gene sequences. J Eukaryot Microbiol 54:93–99

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M (2002) Symbiosis in the termite gut: culture-independent molecular approaches. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer Academic Publishers, Dordrecht, pp 715–730

    Google Scholar 

  • Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9

    PubMed  CAS  Google Scholar 

  • Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–352

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Hongoh Y, Kudo T (2006) Diversity and molecular analyses of yet-uncultivated microorganisms. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Heidelberg, pp 303–317

    Chapter  Google Scholar 

  • Ohkuma M, Iida T, Kudo T (1999a) Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol Lett 181:123–129

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Iida T, Ohtoko K et al (2005) Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Hypermastigea. Mol Phylogenet Evol 35:646–655

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Kudo T (1998) Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiol Lett 164:389–395

    Article  CAS  Google Scholar 

  • Ohkuma M, Noda S, Hongoh Y et al (2009) Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proc R Soc B 276:239–245

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Noda S, Hongoh Y, Kudo T (2002) Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites. Biosci Biotech Biochem 66:78–84

    Article  CAS  Google Scholar 

  • Ohkuma M, Noda S, Horikoshi K, Kudo T (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett 134:45–50

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Noda S, Kudo T (1999b) Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol Lett 171:147–153

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Ohtoko K, Grunau C et al (1998) Phylogenetic identification of the symbiotic hypermastigote Trichonympha agilis in the hindgut of the termite Reticulitermes speratus based on small-subunit rRNA sequence. J Eukaryot Microbiol 45:439–444

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Ohtoko K, Iida T et al (2000) Phylogenetic identification of hypermastigotes, Pseudotrichonympha, Spirotrichonympha, Holomastigotoides, and parabasalian symbionts in the hindgut of termites. J Eukaryot Microbiol 47:249–259

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Saita K, Inoue T, Kudo T (2007a) Comparison of four protein phylogeny of parabasalian symbionts in termite guts. Mol Phylogenet Evol 42:847–853

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Sato T, Noda S et al (2007b) The candidate phylum ‘Termite Group 1’ of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol Ecol 60:467–476

    Article  PubMed  CAS  Google Scholar 

  • Ohtoko K, Ohkuma M, Moriya S et al (2000) Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus. Extremophiles 4:343–349

    Article  PubMed  CAS  Google Scholar 

  • Paster BJ, Dewhirst FE, Cooke SM et al (1996) Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol 62:347–352

    PubMed  CAS  Google Scholar 

  • Purdy KJ (2007) The distribution and diversity of Euryarchaeota in termite guts. Adv Appl Microbiol 62:63–80

    Article  PubMed  CAS  Google Scholar 

  • Radek R, Nitsch G (2007) Ectobiotic spirochetes of flagellates from the termite Mastotermes darwiniensis: attachment and cyst formation. Eur J Protistol 43:281–294

    Article  PubMed  Google Scholar 

  • Roose-Amsaleg C, Brygoo Y, Harry M (2004) Ascomycete diversity in soil-feeding termite nests and soils from a tropical rainforest. Environ Microbiol 6:462–469

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Hongoh Y, Noda S et al (2009) Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ Microbiol 11:1007–1015

    Article  PubMed  Google Scholar 

  • Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003a) Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp). Appl Environ Microbiol 69:6007–6017

    Article  PubMed  CAS  Google Scholar 

  • Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003b) Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp). Appl Environ Microbiol 69:6018–6024

    Article  PubMed  CAS  Google Scholar 

  • Shinzato N, Matsumoto T, Yamaoka I et al (1999) Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization. Appl Environ Microbiol 65:837–840

    PubMed  CAS  Google Scholar 

  • Shinzato N, Matsumoto T, Yamaoka I et al (2001) Methanogenic symbionts and the locality of their host lower termites. Microbes Environ 16:43–47

    Article  Google Scholar 

  • Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2005) Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Biosci Biotechnol Biochem 69:1145–1155

    Article  PubMed  CAS  Google Scholar 

  • Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2007) Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Odontotermes formosanus. Biosci Biotechnol Biochem 71:906–915

    Article  PubMed  CAS  Google Scholar 

  • Simpson AGB (2003) Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int J Syst Evol Microbiol 53:1759–1777

    Article  PubMed  Google Scholar 

  • Slamovits CH, Keeling PJ (2006) A high density of ancient spliceosomal introns in oxymonad excavates. BMC Evol Biol 6:34

    Article  PubMed  CAS  Google Scholar 

  • Stingl U, Brune A (2003) Phylogenetic diversity and whole-cell hybridization of oxymonad flagellates from the hindgut of the wood-feeding lower termite Reticulitermes flavipes. Protist 154:147–155

    Article  PubMed  CAS  Google Scholar 

  • Stingl U, Maass A, Radek R, Brune A (2004) Symbionts of the gut flagellate Staurojoenina sp. from Neotermes cubanus represent a novel, termite-associated lineage of Bacteroidales: description of ‘Candidatus Vestibaculum illigatum’. Microbiology 150:2229–2235

    Article  PubMed  CAS  Google Scholar 

  • Stingl U, Radek R, Yang H, Brune A (2005) “Endomicrobia”: cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol 71:1473–1479

    Article  PubMed  CAS  Google Scholar 

  • Strassert JFH, Desai MS, Brune A, Radek R (2009) The true diversity of devescovinid flagellates in the termite Incisitermes marginipennis. Protist 160:522–535

    Article  PubMed  Google Scholar 

  • Strassert JFH, Desai MS, Radek R, Brune A (2010) Identification and localization of the multiple bacterial symbionts of the termite gut flagellate Joenia annectens. Microbiology 156:2068–2079

    Google Scholar 

  • Tanaka H, Aoyagi H, Shina S et al (2006) Influence of the diet components on the symbiotic microorganisms community in hindgut of Coptotermes formosanus Shiraki. Appl Microbiol Biotechnol 71:907–917

    Article  PubMed  CAS  Google Scholar 

  • Thongaram T, Hongoh Y, Kosono S et al (2005) Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9:229–238

    Article  PubMed  Google Scholar 

  • Todaka N, Inoue T, Saita K et al (2010) Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach. PLoS One 5:e8636

    Article  PubMed  CAS  Google Scholar 

  • Todaka N, Moriya S, Saita K et al (2007) Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol Ecol 59:592–599

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Yamaoka I, Noda H (2000) Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl Environ Microbiol 66:2199–2207

    Article  PubMed  CAS  Google Scholar 

  • Tokura M, Ohkuma M, Kudo T (2000) Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33:233–240

    Article  PubMed  CAS  Google Scholar 

  • Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Nakashima K, Saito H, Slaytor M (2002) New endo-β-1,4-glucanases from the parabasalian symbionts, Pseudotrichonympha grassii and Holomastigotoides mirabile of Coptotermes termites. Cell Mol Life Sci 59:1983–1992

    Article  PubMed  CAS  Google Scholar 

  • Wenzel M, Radek R, Brugerolle G, König H (2003) Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur J Protistol 39:11–23

    Article  Google Scholar 

  • Yang H, Schmitt-Wagner D, Stingl U, Brune A (2005) Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol 7:916–932

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Smith JA, Oi FM et al (2007) Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395:29–39

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Karen A. Brune for editing an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moriya Ohkuma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Ohkuma, M., Brune, A. (2010). Diversity, Structure, and Evolution of the Termite Gut Microbial Community. In: Bignell, D., Roisin, Y., Lo, N. (eds) Biology of Termites: a Modern Synthesis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3977-4_15

Download citation

Publish with us

Policies and ethics