Diversity, Structure, and Evolution of the Termite Gut Microbial Community

Chapter

Abstract

The gut of termites is densely populated with microbial symbionts that aid in the efficient digestion of recalcitrant lignocellulose. Despite the formidable unculturability of the resident members, ribosomal RNA-based molecular analyses and other comprehensive and elaborate culture-independent studies of molecular microbial ecology in the past decade have gradually unveiled the complex nature of the intestinal microbiota. The microbial community, whose structure and spatial distribution seems to be characteristic for a termite species (but may differ between genera), consists of mostly novel lineages that seem to have co-evolved or converged with their particular host. A prominent feature of lower termites is the tripartite symbiosis with a variety of flagellated protists that are themselves associated with diverse prokaryotes. Here, the complete genome sequences of several bacterial endosymbionts have disclosed their functional interactions with their host flagellates, but the highly structured and coevolving nature of these associations requires more emphasis in future studies.

References

  1. Abe T, Bignell DE, Higashi M (eds) (2000) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic Publishers, DordrechtGoogle Scholar
  2. Adl SM, Simpson AGB, Farmer MA et al (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451PubMedCrossRefGoogle Scholar
  3. Berchtold M, Chatzinotas A, Schönhuber W et al (1999) Differential enumeration and in situ localization of micro-organisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Arch Microbiol 172:407–416PubMedCrossRefGoogle Scholar
  4. Berchtold M, König H (1995) Phylogenetic position of the two uncultivated trichomonads Pentatrichomonoides scroa Kirby and Metadevescovina extranea Kirby from the hindgut of the termite Mastotermes darwiniensis Froggatt. Syst Appl Microbiol 18:567–573CrossRefGoogle Scholar
  5. Berchtold M, König H (1996) Phylogenetic analysis and in situ identification of uncultivated spirochetes from the hindgut of the termite Mastotermes darwiniensis. Syst Appl Microbiol 19:66–73CrossRefGoogle Scholar
  6. Berchtold M, Ludwig W, König H (1994) 16S rDNA sequence and phylogenetic position of an uncultivated spirochete from the hindgut of the termite Mastotermes darwiniensis Froggatt. FEMS Microbiol Lett 123:269–273PubMedCrossRefGoogle Scholar
  7. Berlanga M, Paster BJ, Guerrero R (2007) Coevolution of symbiotic spirochete diversity in lower termites. Int Microbiol 10:133–139PubMedGoogle Scholar
  8. Brauman A, Dore J, Eggleton P et al (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36PubMedCrossRefGoogle Scholar
  9. Brugerolle G, Patterson DJ (2001) Ultrastructure of Joenina pulchella Grassi, 1917 (Protista, Parabasalia), a reassessment of evolutionary trends in the parabasalids, and a new order Cristamonadida for devescovinid, calonymphid and lophomonad flagellates. Org Divers Evol 1:147–160CrossRefGoogle Scholar
  10. Brugerolle G, Radek R (2006) Symbiotic protozoa of termites In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 243–269CrossRefGoogle Scholar
  11. Brune A (1998) Termite guts: the world’s smallest bioreactors. Trends Biotechnol 16:16–21CrossRefGoogle Scholar
  12. Brune A (2006) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes, vol 1, 3rd edn. Symbiotic associations, biotechnology, applied microbiology, Springer, New York, NY, pp 439–474CrossRefGoogle Scholar
  13. Brune A (2007) Woodworker’s digest. Nature 450:487–488PubMedCrossRefGoogle Scholar
  14. Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269PubMedCrossRefGoogle Scholar
  15. Brune A, Stingl U (2005) Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. In: Overmann J (ed) Molecular basis of symbiosis. Springer, Berlin, pp 39–60Google Scholar
  16. Carpenter KJ, Chow L, Keeling PJ (2009) Morphology, phylogeny, and diversity of Trichonympha (Parabasalia: Hypermastigida) of the wood-feeding cockroach Cryptocercus punctulatus. J Eukaryot Microbiol 56:305–313PubMedCrossRefGoogle Scholar
  17. Carpenter KJ, Horak A, Keeling PJ (2010) Phylogenetic position and morphology of Spirotrichosomidae (Parabasalia): new evidence from Leptospironympha of Cryptocercus punctulatus. Protist 161:122–132PubMedCrossRefGoogle Scholar
  18. Carpenter KJ, Keeling PJ (2007) Morphology and phylogenetic position of Eucomonympha imla (Parabasalia: Hypermastigida). J Eukaryot Microbiol 54:325–332PubMedCrossRefGoogle Scholar
  19. Carpenter KJ, Waller RF, Keeling PJ (2008) Surface morphology of Saccinobaculus (Oxymonadida): implications for character evolution and function in oxymonads. Protist 159:209–221PubMedCrossRefGoogle Scholar
  20. Dacks JB, Redfield RJ (1998) Phylogenetic placement of Trichonympha. J Eukaryot Microbiol 45:445–447PubMedCrossRefGoogle Scholar
  21. Dacks JB, Silberman JD, Simpson AGB et al (2001) Oxymonads are closely related to the excavate taxon Trimastix. Mol Biol Evol 18:1034–1044PubMedCrossRefGoogle Scholar
  22. Deevong P, Hongoh Y, Inoue T et al (2006) Effect of temporal sample preservation on the molecular study of a complex microbial community in the gut of the termite Microcerotermes sp. Microbes Environ 21:78–85CrossRefGoogle Scholar
  23. de Koning AP, Noble GP, Heiss AA et al (2008) Environmental PCR survey to determine the distribution of a non-canonical genetic code in uncultivable oxymonads. Environ Microbiol 10:65–74PubMedGoogle Scholar
  24. Desai MS, Strassert JFH, Meuser K et al (2010) Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ Microbiol 12:2120–2132PubMedGoogle Scholar
  25. Dolan MF (2001) Speciation of termite gut protists: the role of bacterial symbionts. Int Microbiol 4:203–208PubMedCrossRefGoogle Scholar
  26. Donovan SE, Purdy KJ, Kane MD, Eggleton P (2005) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892CrossRefGoogle Scholar
  27. Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630PubMedCrossRefGoogle Scholar
  28. Fall S, Hamelin J, Ndiaye F et al (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds. Appl Environ Microbiol 73:5199–5208PubMedCrossRefGoogle Scholar
  29. Fall S, Nazaret S, Chotte JL, Brauman A (2004) Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds. Microb Ecol 28:191–199CrossRefGoogle Scholar
  30. Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890PubMedCrossRefGoogle Scholar
  31. Fröhlich J, König H (1999) Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. Syst Appl Microbiol 22:249–257PubMedCrossRefGoogle Scholar
  32. Geissinger O, Herlemann DPR, Mörschel E et al (2009) The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the termite group I phylum. Appl Environ Microbiol 75:2831–2840PubMedCrossRefGoogle Scholar
  33. Gerbod D, Noël C, Dolan MF et al (2002) Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Devescovinidae and Calonymphidae (Trichomonadea) Mol Phylogenet Evol 25:545–556PubMedCrossRefGoogle Scholar
  34. Gerbod D, Sanders E, Moriya S et al (2004) Molecular phylogenies of Parabasalia inferred from four protein genes and comparison with rRNA trees. Mol Phylogenet Evol 31:572–580PubMedCrossRefGoogle Scholar
  35. Godon JJ, Morinière J, Moletta M et al (2005) Rarity associated with specific ecological niches in the bacterial world: the ‘Synergistes’ example. Environ Microbiol 7:213–224PubMedCrossRefGoogle Scholar
  36. Hampl V, Cepicka I, Flegr J et al (2004) Critical analysis of the topology and rooting of the parabasalian 16S rRNA tree. Mol Phylogenet Evol 32:711–723PubMedCrossRefGoogle Scholar
  37. Hampl V, Hug L, Leigh JW et al (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA 106:3859–3864PubMedCrossRefGoogle Scholar
  38. Hara K, Shinzato N, Ohshima T, Yamagishi A (2004) Endosymbiotic Methanobrevibacter species living in symbiotic protists of the termite Reticulitermes speratus detected by fluorescent in situ hybridization. Microbes Environ 19:120–127CrossRefGoogle Scholar
  39. Hara K, Shinzato N, Seo M et al (2002) Phylogenetic analysis of symbiotic Archaea living in the gut of xylophagous cockroaches. Microbes Environ 17:185–190CrossRefGoogle Scholar
  40. Harper JT, Gile GH, James ER et al (2009) The inadequacy of morphology for species and genus delineation in microbial eukaryotes: an example from the parabasalian termite symbiont Coronympha. PLoS One 4:e6577PubMedCrossRefGoogle Scholar
  41. Hayashi A, Aoyagi H, Yoshimura T, Tanaka H (2007) Development of novel method for screening microorganisms using symbiotic association between insect (Coptotermes formosanus Shiraki) and intestinal microorganisms. J Biosci Bioeng 103:358–367PubMedCrossRefGoogle Scholar
  42. Heiss AA, Keeling PJ (2006) The phylogenetic position of the oxymonad Saccinobaculus based on SSU rRNA. Protist 157:335–344PubMedCrossRefGoogle Scholar
  43. Herlemann DPR, Geissinger O, Brune A (2007) The termite group I phylum is highly diverse and widespread in the environment. Appl Environ Microbiol 73:6682–6685PubMedCrossRefGoogle Scholar
  44. Herlemann DPR, Geissinger O, Ikeda-Ohtsubo W et al (2009) Genome analysis of “Elusimicrobium minutum,” the first cultivated representative of the phylum “Elusimicrobia” (formerly Termite Group 1). Appl Environ Microbiol 75:2841–2849PubMedCrossRefGoogle Scholar
  45. Hongoh Y, Deevong P, Hattori S et al (2006a) Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 72:6780–6788PubMedCrossRefGoogle Scholar
  46. Hongoh Y, Deevong P, Inoue T et al (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599PubMedCrossRefGoogle Scholar
  47. Hongoh Y, Ekpornprasit L, Inoue T et al (2006b) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516PubMedCrossRefGoogle Scholar
  48. Hongoh Y, Ohkuma M (2010) Termite gut flagellates and their methanogenic and eubacterial symbionts. In: Hackstein JHP (ed) Microbiology monographs: (endo) symbiotic methanogenic archaea. Springer, Berlin, Heidelberg, in pressGoogle Scholar
  49. Hongoh Y, Ohkuma M, Kudo T (2003a) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242PubMedCrossRefGoogle Scholar
  50. Hongoh Y, Sato T, Dolan MF et al (2007a) The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the “Synergistes” group. Appl Environ Microbiol 73:6270–6276PubMedCrossRefGoogle Scholar
  51. Hongoh Y, Sato T, Noda S et al (2007b) Candidatus Symbiothrix dinenymphae: bristle-like Bacteroidales ectosymbionts of termite gut protists. Environ Microbiol 9:2631–2635PubMedCrossRefGoogle Scholar
  52. Hongoh Y, Sharma VK, Prakash T et al (2008a) Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc Natl Acad Sci USA 105:5555–5560PubMedCrossRefGoogle Scholar
  53. Hongoh Y, Sharma VK, Prakash T et al (2008b) Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108–1109PubMedCrossRefGoogle Scholar
  54. Hongoh Y, Yuzawa H, Ohkuma M, Kudo T (2003b) Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol Lett 221:299–304PubMedCrossRefGoogle Scholar
  55. Iida T, Ohkuma M, Ohtoko K, Kudo T (2000) Symbiotic spirochetes in the termite hindgut: phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiol Ecol 34:17–26PubMedCrossRefGoogle Scholar
  56. Ikeda-Ohtsubo W, Brune A (2009) Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and ‘Candidatus Endomicrobium trichonymphae’. Mol Ecol 18:332–342PubMedCrossRefGoogle Scholar
  57. Ikeda-Ohtsubo W, Desai M, Stingl U, Brune A (2007) Phylogenetic diversity of ‘Endomicrobia’ and their specific affiliation with termite gut flagellates. Microbiology 153:3458–3465PubMedCrossRefGoogle Scholar
  58. Ikeda-Ohtsubo W, Faivre N, Brune A (2010) Putatively free-living “Endomicrobia” – ancestors of the intracellular symbionts of termite gut flagellates? Environ Microbiol Rep. 2:554–559CrossRefGoogle Scholar
  59. Inoue T, Moriya S, Ohkuma M, Kudo T (2005) Molecular cloning and characterization of a cellulase gene from a symbiotic protist of the lower termite, Coptotermes formosanus. Gene 349:67–75PubMedCrossRefGoogle Scholar
  60. Inoue JI, Noda S, Hongoh Y et al (2008) Identification of endosymbiotic methanogen and ectosymbiotic spirochetes of gut protists of the termite Coptotermes formosanus. Microbes Environ 23:94–97PubMedCrossRefGoogle Scholar
  61. Inoue JI, Saita K, Kudo T et al (2007) Hydrogen production by termite gut protists: characterization of iron hydrogenases of parabasalian symbionts of the termite Coptotermes formosanus. Eukaryot Cell 6:1925–1932PubMedCrossRefGoogle Scholar
  62. Keeling PJ (2002) Molecular phylogenetic position of Trichomitopsis termopsidis (Parabasalia) and evidence for the Trichomitopsiinae. Eur J Protistol 38:279–286CrossRefGoogle Scholar
  63. Keeling PJ (2004) Polymorphic insertions and deletions in parabasalian enolase genes. J Mol Evol 58:550–556PubMedCrossRefGoogle Scholar
  64. Keeling PJ, Leander BS (2003) Characterisation of a non-canonical genetic code in the oxymonad Streblomastix strix. J Mol Biol 326:1337–1349PubMedCrossRefGoogle Scholar
  65. Keeling PJ, Poulsen N, Mcfadden GI (1998) Phylogenetic diversity of parabasalian symbionts from termites, including the phylogenetic position of Pseudotrypanosoma and Trichonympha. J Eukaryot Microbiol 45:643–650PubMedCrossRefGoogle Scholar
  66. Kitade O (2004) Comparison of symbiotic flagellate faunae between termites and a wood-feeding cockroach of the genus Cryptocercus. Microbes Environ 19:215–220CrossRefGoogle Scholar
  67. Köhler T, Stingl U, Meuser K, Brune A (2008) Novel lineages of Planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp). Environ Microbiol 10:1260–1270PubMedCrossRefGoogle Scholar
  68. Leander BS, Keeling PJ (2004) Symbiotic innovation in the oxymonad Streblomastix strix. J Eukaryot Microbiol 51:291–300PubMedCrossRefGoogle Scholar
  69. Lefebvre T, Miambi E, Pando A et al (2009) Gut-specific actinobacterial community structure and diversity associated with the wood-feeding termite species, Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis. Insect Soc 56:269–276CrossRefGoogle Scholar
  70. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848PubMedCrossRefGoogle Scholar
  71. Li L, Fröhlich J, Pfeiffer P, König H (2003) Termite gut symbiotic Archaezoa are becoming living metabolic fossils. Eukaryot Cell 2:1091–1098PubMedCrossRefGoogle Scholar
  72. Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345PubMedCrossRefGoogle Scholar
  73. Lo N, Tokuda G, Watanabe H et al (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804PubMedCrossRefGoogle Scholar
  74. Minkley N, Fujita A, Brune A, Kirchner WH (2006) Nest specificity of the bacterial community in termite guts (Hodotermes mossambicus). Insect Soc 53:339–344CrossRefGoogle Scholar
  75. Miyata R, Noda N, Tamaki H et al (2007a) Phylogenetic relationship of symbiotic Archaea in the gut of the higher termite Nasutitermes takasagoensis fed with various carbon sources. Microbes Environ 22:157–164CrossRefGoogle Scholar
  76. Miyata R, Noda N, Tamaki H et al (2007b) Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotechnol Biochem 71:1244–1251PubMedCrossRefGoogle Scholar
  77. Moriya S, Dacks JB, Takagi A et al (2003) Molecular phylogeny of three oxymonad genera: Pyrsonympha, Dinenympha and Oxymonas. J Eukaryot Microbiol 50:190–197PubMedCrossRefGoogle Scholar
  78. Moriya S, Ohkuma M, Kudo T (1998) Phylogenetic position of symbiotic protist Dinenympha exilis in the hindgut of the termite Reticulitermes speratus inferred from the protein phylogeny of elongation factor 1 alpha. Gene 210:221–227PubMedCrossRefGoogle Scholar
  79. Moriya S, Tanaka K, Ohkuma M et al (2001) Diversification of the microtubule system in the early stage of eukaryote evolution: elongation factor 1 alpha and alpha-tubulin protein phylogeny of termite symbiotic oxymonad and hypermastigote protists. J Mol Evol 52:6–16PubMedGoogle Scholar
  80. Nakajima H, Hongoh Y, Noda S et al (2006) Phylogenetic and morphological diversity of Bacteroidales members associated with the gut wall of termites. Biosci Biotech Biochem 70:211–218CrossRefGoogle Scholar
  81. Nakajima H, Hongoh Y, Usami R et al (2005) Spatial distribution of bacterial phylotypes in the gut of the termite Reticulitermes speratus and the bacterial community colonizing the gut epithelium. FEMS Microbiol Ecol 54:247–255PubMedCrossRefGoogle Scholar
  82. Nakashima KI, Watanabe H, Azuma JI (2002) Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus. Cell Mol Life Sci 59:1554–1560PubMedCrossRefGoogle Scholar
  83. Nalepa CA, Bignell DE, Bandi C (2001) Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48:194–201CrossRefGoogle Scholar
  84. Noda S, Hongoh Y, Sato T, Ohkuma M (2009a) Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol Biol 9:158PubMedCrossRefGoogle Scholar
  85. Noda S, Iida T, Kitade S et al (2005) Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite Coptotermes formosanus. Appl Environ Microbiol 71:8811–8817PubMedCrossRefGoogle Scholar
  86. Noda S, Inoue T, Hongoh Y et al (2006a) Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 8:11–20PubMedCrossRefGoogle Scholar
  87. Noda S, Kawai M, Nakajima H et al (2006b) Identification and in situ detection of two lineages of Bacteroidales ectosymbionts associated with a termite gut protist, Oxymonas sp. Microbes Environ 21:16–22CrossRefGoogle Scholar
  88. Noda S, Kitade O, Inoue T et al (2007) Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol Ecol 16:1257–1266PubMedCrossRefGoogle Scholar
  89. Noda S, Mantini C, Bordereau C et al (2009b) Molecular phylogeny of parabasalids with emphasis on the order Cristamonadida and its complex morphological evolution. Mol Phylogenet Evol 52:217–224PubMedCrossRefGoogle Scholar
  90. Noda S, Ohkuma M, Yamada A et al (2003) Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Appl Environ Microbiol 69:625–633PubMedCrossRefGoogle Scholar
  91. Noël C, Noda S, Mantini C et al (2007) Molecular phylogenetic position of the genera Stephanonympha and Caduceia (Parabasalia) inferred from nuclear small subunit rRNA gene sequences. J Eukaryot Microbiol 54:93–99PubMedCrossRefGoogle Scholar
  92. Ohkuma M (2002) Symbiosis in the termite gut: culture-independent molecular approaches. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer Academic Publishers, Dordrecht, pp 715–730Google Scholar
  93. Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9PubMedGoogle Scholar
  94. Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–352PubMedCrossRefGoogle Scholar
  95. Ohkuma M, Hongoh Y, Kudo T (2006) Diversity and molecular analyses of yet-uncultivated microorganisms. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Heidelberg, pp 303–317CrossRefGoogle Scholar
  96. Ohkuma M, Iida T, Kudo T (1999a) Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol Lett 181:123–129PubMedCrossRefGoogle Scholar
  97. Ohkuma M, Iida T, Ohtoko K et al (2005) Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Hypermastigea. Mol Phylogenet Evol 35:646–655PubMedCrossRefGoogle Scholar
  98. Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468PubMedGoogle Scholar
  99. Ohkuma M, Kudo T (1998) Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiol Lett 164:389–395CrossRefGoogle Scholar
  100. Ohkuma M, Noda S, Hongoh Y et al (2009) Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proc R Soc B 276:239–245PubMedCrossRefGoogle Scholar
  101. Ohkuma M, Noda S, Hongoh Y, Kudo T (2002) Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites. Biosci Biotech Biochem 66:78–84CrossRefGoogle Scholar
  102. Ohkuma M, Noda S, Horikoshi K, Kudo T (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett 134:45–50PubMedCrossRefGoogle Scholar
  103. Ohkuma M, Noda S, Kudo T (1999b) Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol Lett 171:147–153PubMedCrossRefGoogle Scholar
  104. Ohkuma M, Ohtoko K, Grunau C et al (1998) Phylogenetic identification of the symbiotic hypermastigote Trichonympha agilis in the hindgut of the termite Reticulitermes speratus based on small-subunit rRNA sequence. J Eukaryot Microbiol 45:439–444PubMedCrossRefGoogle Scholar
  105. Ohkuma M, Ohtoko K, Iida T et al (2000) Phylogenetic identification of hypermastigotes, Pseudotrichonympha, Spirotrichonympha, Holomastigotoides, and parabasalian symbionts in the hindgut of termites. J Eukaryot Microbiol 47:249–259PubMedCrossRefGoogle Scholar
  106. Ohkuma M, Saita K, Inoue T, Kudo T (2007a) Comparison of four protein phylogeny of parabasalian symbionts in termite guts. Mol Phylogenet Evol 42:847–853PubMedCrossRefGoogle Scholar
  107. Ohkuma M, Sato T, Noda S et al (2007b) The candidate phylum ‘Termite Group 1’ of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol Ecol 60:467–476PubMedCrossRefGoogle Scholar
  108. Ohtoko K, Ohkuma M, Moriya S et al (2000) Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus. Extremophiles 4:343–349PubMedCrossRefGoogle Scholar
  109. Paster BJ, Dewhirst FE, Cooke SM et al (1996) Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol 62:347–352PubMedGoogle Scholar
  110. Purdy KJ (2007) The distribution and diversity of Euryarchaeota in termite guts. Adv Appl Microbiol 62:63–80PubMedCrossRefGoogle Scholar
  111. Radek R, Nitsch G (2007) Ectobiotic spirochetes of flagellates from the termite Mastotermes darwiniensis: attachment and cyst formation. Eur J Protistol 43:281–294PubMedCrossRefGoogle Scholar
  112. Roose-Amsaleg C, Brygoo Y, Harry M (2004) Ascomycete diversity in soil-feeding termite nests and soils from a tropical rainforest. Environ Microbiol 6:462–469PubMedCrossRefGoogle Scholar
  113. Sato T, Hongoh Y, Noda S et al (2009) Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ Microbiol 11:1007–1015PubMedCrossRefGoogle Scholar
  114. Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003a) Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp). Appl Environ Microbiol 69:6007–6017PubMedCrossRefGoogle Scholar
  115. Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003b) Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp). Appl Environ Microbiol 69:6018–6024PubMedCrossRefGoogle Scholar
  116. Shinzato N, Matsumoto T, Yamaoka I et al (1999) Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization. Appl Environ Microbiol 65:837–840PubMedGoogle Scholar
  117. Shinzato N, Matsumoto T, Yamaoka I et al (2001) Methanogenic symbionts and the locality of their host lower termites. Microbes Environ 16:43–47CrossRefGoogle Scholar
  118. Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2005) Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Biosci Biotechnol Biochem 69:1145–1155PubMedCrossRefGoogle Scholar
  119. Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2007) Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Odontotermes formosanus. Biosci Biotechnol Biochem 71:906–915PubMedCrossRefGoogle Scholar
  120. Simpson AGB (2003) Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int J Syst Evol Microbiol 53:1759–1777PubMedCrossRefGoogle Scholar
  121. Slamovits CH, Keeling PJ (2006) A high density of ancient spliceosomal introns in oxymonad excavates. BMC Evol Biol 6:34PubMedCrossRefGoogle Scholar
  122. Stingl U, Brune A (2003) Phylogenetic diversity and whole-cell hybridization of oxymonad flagellates from the hindgut of the wood-feeding lower termite Reticulitermes flavipes. Protist 154:147–155PubMedCrossRefGoogle Scholar
  123. Stingl U, Maass A, Radek R, Brune A (2004) Symbionts of the gut flagellate Staurojoenina sp. from Neotermes cubanus represent a novel, termite-associated lineage of Bacteroidales: description of ‘Candidatus Vestibaculum illigatum’. Microbiology 150:2229–2235PubMedCrossRefGoogle Scholar
  124. Stingl U, Radek R, Yang H, Brune A (2005) “Endomicrobia”: cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol 71:1473–1479PubMedCrossRefGoogle Scholar
  125. Strassert JFH, Desai MS, Brune A, Radek R (2009) The true diversity of devescovinid flagellates in the termite Incisitermes marginipennis. Protist 160:522–535PubMedCrossRefGoogle Scholar
  126. Strassert JFH, Desai MS, Radek R, Brune A (2010) Identification and localization of the multiple bacterial symbionts of the termite gut flagellate Joenia annectens. Microbiology 156:2068–2079Google Scholar
  127. Tanaka H, Aoyagi H, Shina S et al (2006) Influence of the diet components on the symbiotic microorganisms community in hindgut of Coptotermes formosanus Shiraki. Appl Microbiol Biotechnol 71:907–917PubMedCrossRefGoogle Scholar
  128. Thongaram T, Hongoh Y, Kosono S et al (2005) Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9:229–238PubMedCrossRefGoogle Scholar
  129. Todaka N, Inoue T, Saita K et al (2010) Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach. PLoS One 5:e8636PubMedCrossRefGoogle Scholar
  130. Todaka N, Moriya S, Saita K et al (2007) Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol Ecol 59:592–599PubMedCrossRefGoogle Scholar
  131. Tokuda G, Yamaoka I, Noda H (2000) Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl Environ Microbiol 66:2199–2207PubMedCrossRefGoogle Scholar
  132. Tokura M, Ohkuma M, Kudo T (2000) Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33:233–240PubMedCrossRefGoogle Scholar
  133. Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565PubMedCrossRefGoogle Scholar
  134. Watanabe H, Nakashima K, Saito H, Slaytor M (2002) New endo-β-1,4-glucanases from the parabasalian symbionts, Pseudotrichonympha grassii and Holomastigotoides mirabile of Coptotermes termites. Cell Mol Life Sci 59:1983–1992PubMedCrossRefGoogle Scholar
  135. Wenzel M, Radek R, Brugerolle G, König H (2003) Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur J Protistol 39:11–23CrossRefGoogle Scholar
  136. Yang H, Schmitt-Wagner D, Stingl U, Brune A (2005) Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol 7:916–932PubMedCrossRefGoogle Scholar
  137. Zhou X, Smith JA, Oi FM et al (2007) Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395:29–39PubMedCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Microbe Division(Japan Collection of Microorganisms), RIKEN BioResource CenterSaitamaJapan
  2. 2.Department of BiogeochemistryMax Planck Institute for Terrestrial MicrobiologyMarburgGermany

Personalised recommendations