Combination Therapy: Complexing of QDs with Tetrapyrrols and Other Dyes

Chapter

Abstract

Analysis of recent works on investigation of photophysical properties of the complexes formed by the colloidal semiconductor quantum dots (QDs) and tetrapyrrol substances in liquid solution as well as the mechanisms of the complex formation was performed with the aim of utilization of the complexes in the cancer photodynamic therapy as a new approach in the combination therapy. It is demonstrated that the use of QDs as the energy donor allows to substantially extend spectral range of the complexes absorption and, therefore, to widen the set of the appropriate light sources for activation of sensitizer molecule in the complex. Besides the efficient energy transfer from QD to the tetrapyrrol molecule, it was shown that the molecule retains the capability of singlet oxygen generating with high quantum yield. Two solutions of the problem of delivery of the exciting radiation to the cancer cells due to strong absorption of the visible light by biological tissues are considered: (1) Two-photon activation of the QD/photosensitizer complex by using light in the 700–1,200 nm spectral range where the biological tissues have a minimal absorption. (2) X-ray activation of the QD/photosensitizer complex. The results of the analysis of existing works demonstrate that the QD/tetrapyrrol complexes have a large potential for application in PDT.

Keywords

Singlet Oxygen Fluorescence Resonance Energy Transfer Singlet Oxygen Generation Luminescence Quantum Yield Fluorescence Resonance Energy Transfer Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ekimov AI, Onushchenko AA (1982) Quantum size effects in the optical spectra of ­semiconductor micro-crystals. Sov Phys Semicond 16:775–778Google Scholar
  2. 2.
    Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E  =  S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  3. 3.
    Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRefGoogle Scholar
  4. 4.
    Bruchez M Jr, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefGoogle Scholar
  5. 5.
    Pellegrino T, Manna L, Kudera S et al (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett 4:703–707CrossRefGoogle Scholar
  6. 6.
    Liu W, Howarth M, Greytak AB et al (2008) Compact biocompatible quantum dots functionalized for cellular imaging. J Am Chem Soc 130:1274–1284CrossRefGoogle Scholar
  7. 7.
    Goldman ER, Balighian ED, Mattoussi H et al (2002) Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc 124:6378–6382CrossRefGoogle Scholar
  8. 8.
    Akerman ME, Chan WCW, Laakkonen P et al (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99:12617–12621CrossRefGoogle Scholar
  9. 9.
    Mahtab R, Rogers JP, Murphy CJ (1995) Protein-sized quantum dot luminescence can distinguish between “straight”, “bent”, and “kinked” oligonucleotides. J Am Chem Soc 117:9099–9100CrossRefGoogle Scholar
  10. 10.
    Osaki F, Kanamori T, Sando S et al (2004) A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J Am Chem Soc 126:6520–6521CrossRefGoogle Scholar
  11. 11.
    Chen Y, Ji T, Rosenzweig Z (2003) Synthesis of glyconanospheres containing luminescent CdSe-ZnS quantum dots. Nano Lett 3:581–584CrossRefGoogle Scholar
  12. 12.
    Lingerfelt BM, Mattoussi H, Goldman ER et al (2003) Preparation of quantum dot-biotin conjugates and their use in immunochromatography assays. Anal Chem 75:4043–4049CrossRefGoogle Scholar
  13. 13.
    Juzenas P, Chen W, Sun Y-P et al (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 60:1600–1614CrossRefGoogle Scholar
  14. 14.
    Mazumder S, Dey R, Mitra MK et al (2009) Review: biofunctionalized quantum dots in biology and medicine. J Nanomater. doi: 10.1155/2009/815734
  15. 15.
    Norris DJ (2004) Electronic structure in semiconductor nanocrystals. In: Klimov VI (ed) Semiconductor and metal nanocrystals: synthesis and electronic and optical properties. Marcel Dekker, New YorkGoogle Scholar
  16. 16.
    Hollingsworth JA, Klimov VI (2004) “Soft” chemical synthesis and manipulation of semiconductor nanocrystals. In: Klimov VI (ed) Semiconductor and metal nanocrystals: synthesis and electronic and optical properties. Marcel Dekker, New YorkGoogle Scholar
  17. 17.
    Bawendi MG, Wilson WL, Rothberg L et al (1990) Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys Rev Lett 65:1623–1626CrossRefGoogle Scholar
  18. 18.
    Lakowicz JR (2006) Introduction to fluorescence, principles of fluorescence spectroscopy. Springer Science Business Media, LLC, New YorkCrossRefGoogle Scholar
  19. 19.
    Juzeniene A, Nielsen KP, Moan J (2006) Biophysical aspects of photodynamic therapy. J Environ Pathol Toxicol Oncol 25:7–28Google Scholar
  20. 20.
    Bawendi MG, Carroll PJ, Wilson WL, Brus LE (1992) Luminescence properties of CdSe quantum crystallites: resonance between interior and surface localized states. J Chem Phys 96:946–954CrossRefGoogle Scholar
  21. 21.
    Nirmal M, Norris DJ, Kuno M et al (1995) Observation of the “dark exciton” in CdSe quantum dots. Phys Rev Lett 75:3728–3731CrossRefGoogle Scholar
  22. 22.
    Samia AC, Chen X, Burda C et al (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737CrossRefGoogle Scholar
  23. 23.
    Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757CrossRefGoogle Scholar
  24. 24.
    Krasnovsky AA (2007) Primary mechanisms of photoactivation of molecular oxygen. History of development and the modern status of research. Biochemistry (Moscow) 72:1065–1080CrossRefGoogle Scholar
  25. 25.
    Bakalova R, Ohba H, Zhelev Z et al (2004) Quantum dots as photosensitizers? Nat Biotechnol 22:1360–1361CrossRefGoogle Scholar
  26. 26.
    Shi L, Hernandez B, Selke M (2006) Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites. J Am Chem Soc 128:6278–6279CrossRefGoogle Scholar
  27. 27.
    Wuister SF, Swart I, Driel F et al (2003) Highly luminescent water-soluble CdTe quantum dots. Nano Lett 3:503–507CrossRefGoogle Scholar
  28. 28.
    Ma J, Chen J-Y, Idowu M, Nyokong T (2008) Generation of singlet oxygen via the composites of water-soluble thiol-capped CdTe quantum dots-sulfonated aluminum phthalocyanines. J Phys Chem B 112:4465–4469CrossRefGoogle Scholar
  29. 29.
    Brooks RA, Moiny F, Gillis P (2001) On T 2-shortening by weakly magnetized particles: the chemical exchange model. Magn Reson Med 45:1014–1020CrossRefGoogle Scholar
  30. 30.
    Byrne SJ, Corr SA, Rakovich TY et al (2006) Optimisation of the synthesis and modification of CdTe quantum dots for enhanced live cell imaging. J Mater Chem 16:2896–2902CrossRefGoogle Scholar
  31. 31.
    Byrne SJ, Williams Y, Davies A et al (2007) “Jelly dots”: synthesis and cytotoxicity studies of CdTe quantum dot – gelatin nanocomposites. Small 3:1152–1156CrossRefGoogle Scholar
  32. 32.
    Byrne SJ, le Bon B, Corr SA et al (2007) Synthesis, photophysical characterisation and biological investigation of CdTe quantum dot –naproxen conjugates. ChemMedChem 2:183–186CrossRefGoogle Scholar
  33. 33.
    Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019–7029CrossRefGoogle Scholar
  34. 34.
    Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of mono­disperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610CrossRefGoogle Scholar
  35. 35.
    Nitin N, LaConte LEW, Zurkiya O et al (2004) Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J Biol Inorg Chem 9:706–712CrossRefGoogle Scholar
  36. 36.
    Jan E, Byrne SJ, Cuddihy M et al (2008) High content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano 2:928–938CrossRefGoogle Scholar
  37. 37.
    Peng CW, Li Y (2010) Application of quantum dots-based biotechnology in cancer diagnosis: current status and future perspectives. J Nanomater 676839:1–11. doi: 10.1155/2010/676839 Google Scholar
  38. 38.
    Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxisity of semiconductor quantum dots. Nano Lett 4:11–18CrossRefGoogle Scholar
  39. 39.
    Murphy CJ (2002) Optical sensing with quantum dots. Anal Chem 74:520A–526ACrossRefGoogle Scholar
  40. 40.
    Britton J, Antunes E, Nyokong T (2010) Fluorescence quenching and energy transfer in conjugates of quantum dots with zinc and indium tetraamino phthalocyanines. J Photochem Photobiol A Chem 210:1–7CrossRefGoogle Scholar
  41. 41.
    Tsay JM, Trzoss M, Shi LX et al (2007) Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J Am Chem Soc 129:6865–6871CrossRefGoogle Scholar
  42. 42.
    Wargnier R, Baranov AV, Maslov VG et al (2004) Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies. Nano Lett 4:451–457CrossRefGoogle Scholar
  43. 43.
    Orlova AO, Maslov VG, Baranov AV et al (2008) Spectral-luminescence study of the formation of QD–sulfophthalocyanine molecule complexes in an aqueous solution. Opt Spectrosc 105:726–731CrossRefGoogle Scholar
  44. 44.
    Orlova AO, Maslov VG, Stepanov AA et al (2008) Formation of QD–porphyrin molecule complexes in aqueous solutions. Opt Spectrosc 105:889–895CrossRefGoogle Scholar
  45. 45.
    Moeno S, Idowu M, Nyokong T (2008) Spontaneous charge transfer between zinc tetramethyl-tetra-2,3-pyridinoporphyrazine and CdTe and ZnS quantum dots. Inorg Chim Acta 361:2950–2956CrossRefGoogle Scholar
  46. 46.
    Schmelz O, Mews A, Basche T et al (2001) Supramolecular complexes from CdSe nanocrystals and organic fluorophors. Langmuir Am Chem Soc 17:2861–2865Google Scholar
  47. 47.
    Orlova AO, Adrianov VE, Maslov VG et al (2010) Photophysical manifestations of ­interactions of quantum dots with ortho-phenanthroline molecules. Opt Spectrosc 108:934–940CrossRefGoogle Scholar
  48. 48.
    Orlova AO, Maslov VG, Toropova YuA et al (2010) A film luminescent nanosensor based on a quantum dot–organic molecule complex. Nanotechnol Russ 5:49–57CrossRefGoogle Scholar
  49. 49.
    Zenkevich E, Cichos F, Shulga A et al (2005) Nanoassemblies designed from semiconductor quantum dots and molecular arrays. J Phys Chem B 109:8679–8692CrossRefGoogle Scholar
  50. 50.
    Zenkevich EI, Blaudeck T, Shulga AM et al (2007) Identification and assignment of porphyrin–CdSe hetero-nanoassemblies. J Luminescence 122–123:784–788CrossRefGoogle Scholar
  51. 51.
    Zenkevich E, Blaudeck T, Abdel-Mottaleb M et al (2006) Photophysical properties of self-aggregated porphyrin: semiconductor nanoassemblies. Int J Photoenergy. doi: 10.1155/IJP/2006/90242
  52. 52.
    Frasco MF, Vamvakaki V, Chaniotakis N (2010) Porphyrin decorated CdSe quantum dots for direct fluorescent sensing of metal ions. J Nanopart Res 12:1449–1458CrossRefGoogle Scholar
  53. 53.
    Orlova AO, Maslov VG, Skaletskaya IE, Baranov AV (2006) Energy transfer in associates of semiconductor quantum dots with tetrapyridinoporphyrazine molecules. Opt Spectrosc 101:582–589CrossRefGoogle Scholar
  54. 54.
    Idowu M, Chen J-Y, Nyokong T (2008) Photoinduced energy transfer between water-soluble CdTe quantum dots and aluminium tetrasulfonated phthalocyanine. New J Chem 32:290–296CrossRefGoogle Scholar
  55. 55.
    Orlova AO, Gubanova MS, Maslov VG et al (2010) Spectral_luminescence properties of the complexes formed by similarly charged CdTe quantum dots and tetrasulfophthalocyanine molecules. Opt Spectrosc 108:927–933CrossRefGoogle Scholar
  56. 56.
    Clapp AR, Medintz IL, Mauro JM et al (2004) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126:301–310CrossRefGoogle Scholar
  57. 57.
    Chong EZ, Matthews DR, Summers HD et al (2007) Development of FRET-based assays in the far-red using CdTe quantum dots. J Biomed Biotechnol. doi: 10.1155/2007/54169
  58. 58.
    Grecco HE, Lidke KA, Heintzmann R et al (2004) Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Microsc Res Tech 65:169–179CrossRefGoogle Scholar
  59. 59.
    Hildebrandt N, Charbonnière LJ, Löhmannsröben H-G (2007) Time-resolved analysis of a highly sensitive Förster resonance energy transfer immunoassay using terbium complexes as donors and quantum dots as acceptors. J Biomed Biotechnol. doi: 10.1155/2007/79169
  60. 60.
    Moeno S, Nyokong T (2008) The photophysical studies of a mixture of CdTe quantum dots and negatively charged zinc phthalocyanines. Polyhedron 27:1953–1958CrossRefGoogle Scholar
  61. 61.
    Jhonsi MA, Renganathan R (2010) Investigations on the photoinduced interaction of water soluble thioglycolic acid (TGA) capped CdTe quantum dots with certain porphyrins. J Colloid Interface Sci 344:596–602CrossRefGoogle Scholar
  62. 62.
    Dayal S, Lou Y, Samia ACS, Berlin JC et al (2006) Observation of non-Forster-type energy-transfer behavior in quantum dot-phthalocyanine conjugates. J Am Chem Soc 128:13974–13975CrossRefGoogle Scholar
  63. 63.
    Dayal S (2008) Femtosecond time-resolved studies of quantum dots-based energy transfer. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Department of Chemistry, Case Western Reserve University. http://etd.ohiolink.edu/send-pdf.cgi/Dayal%20Smita.pdf?case1207086676. Accessed 13 Aug 2010
  64. 64.
    Dayal S, Burda C (2007) Surface effects on quantum dot-based energy transfer. J Am Chem Soc 129:7977–7981CrossRefGoogle Scholar
  65. 65.
    Wen Y, Song W-s, Li-min An et al (2009) Activation of porphyrin photosensitizers by semiconductor quantum dots via two-photon excitation. Appl Phys Lett 95:143702CrossRefGoogle Scholar
  66. 66.
    Zenkevich EI, Blaudeck Th, Heidernätsch M, Cichos F, von Borczyskowski C (2009) Electron tunneling effects and non-resonant photoluminescence quenching of semiconductor nanocrystals CdSe/ZnS and CdSe by porphyrin molecules in joint complexes. Theor Exp Chem 45:23–34. doi: 10.1007/s11237-009-9058-9 CrossRefGoogle Scholar
  67. 67.
    Yarovoi AA, Zenkevich EI, Sagun EI et al (2007) Photoinduced electron transfer in CdSe nanocrystals passivated by quinone derivatives. In: Proceedings of SPIE 6728 (Novel photonics materials. Optics and optical diagnostics of nanostructures) 67282K. doi: 10.1117/12.752450
  68. 68.
    Narayanan SS, Sinha SS, Pal SK (2008) Sensitized emission from a chemotherapeutic drug conjugated to CdSe/ZnS QDs. J Phys Chem C 112:12716–12720CrossRefGoogle Scholar
  69. 69.
    Yingli Qu, Wei J (2009) Two-photon absorption of quantum dots in the regime of very strong confinement: size and wavelength dependence. J Opt Soc Am B 26:1897–1904Google Scholar
  70. 70.
    Dayal S, Burda C (2008) Semiconductor quantum dots as two-photon sensitizers. J Am Chem Soc 130:2890–2891CrossRefGoogle Scholar
  71. 71.
    Takahashi J, Misawa M (2007) Analysis of potential radiosensitizing materials for x-ray-induced photodynamic therapy. Nanobiotechnology. doi: 10.1007/s12030-008-9009-x
  72. 72.
    Liu C-J, Wang C-H, Chien C-C et al (2008) Enhanced x-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification. Nanotechnology. doi: 10.1088/0957-4484/19/29/295104
  73. 73.
    Jeong SY, Park SJ, Yoon SM et al (2009) Systemic delivery and preclinical evaluation of Au nanoparticle containing β-lapachone for radiosensitization. J Control Release 139:239–245CrossRefGoogle Scholar
  74. 74.
    Chen W, Zhang J (2006) Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J Nanosci Nanotechnol 6:1159–1166CrossRefGoogle Scholar
  75. 75.
    Liu Y, Chen W, Wang Sh, Joly AG (2008) Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation. Appl Phys Lett 92:0439Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Vladimir Maslov
    • 1
  • Anna Orlova
    • 2
  • Alexander Baranov
    • 2
  1. 1.Center of Information Optical TechnologiesSaint-Petersburg State University of Information Technologies, Mechanics and Optics Saint-PetersburgSt. PetersburgRussia
  2. 2.St. Petersburg State University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations