The Use of Phthalocyanines and Related Complexes in Photodynamic Therapy

  • Rodica-Mariana IonEmail author


The phthalocyanines and porphyrins are the most used compounds, called photosensitizers (PS) into photodynamic therapy, due to their NIR absorbing wavelenghts, non-toxicity and high photochemical efficiency. The aim of this chapter is to achieve a better understanding of the phthalocyanines and related compounds, like free bases and metallo-complexes and their sensitizer properties, especially. The photophysical properties (absorption, triplet state, singlet oxygen, photobleaching, and fluorescence quantum yields, and triplet lifetimes so on) are discussed well correlated with their photodynamic activity. Their photodynamic tests in vitro on different cells lines, is discussed properly, taking into account the huge number of existing publications. Some clinical results obtained by using phthalocyanines, porphyrins and related compounds are discussed, too, in order to provide initial data on how currently used PS differ regarding basic PDT-related properties.


Triplet State Singlet Oxygen Photodynamic Therapy Fluorescence Quantum Yield Actinic Keratosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ion RM (2003) Porphyrins and photodynamic therapy of cancer. FMR, BucharestGoogle Scholar
  2. 2.
    Dalla Via L, Marciani Magno S (2001) Photochemotherapy in the treatment of cancer. Curr Med Chem 8:1405–1518Google Scholar
  3. 3.
    Kessel D (2004) Photodynamic therapy: from the beginning. Photodiagn Photodyn Ther 1:3–14CrossRefGoogle Scholar
  4. 4.
    Ion RM (2000) Porphyrins for tumor destruction in photodynamic therapy. Curr Top Biophys 24:21–34Google Scholar
  5. 5.
    Allison RR, Downie GH, Cuenca R et al (2004) Photosensitizers in clinical PDT. Photodiagn Photodyn Ther 1:27–37CrossRefGoogle Scholar
  6. 6.
    Frakowiak D, Planner A et al (1998) Incorporation of dye in resting and stimulated leukocytes. In: Daechne S (ed) Near infrared dyes for high technology applications. Kluwer, Dordrecht/Boston/LondonGoogle Scholar
  7. 7.
    Plaetzer K, Kiesslich T, Oberdanner CB et al (2005) Apoptosis following photodynamic tumor therapy: induction, mechanisms and detection. Curr Pharm Des 11(9):1151–1165CrossRefGoogle Scholar
  8. 8.
    Almeida RD, Manadas BJ, Carvalho AP et al (2004) Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 1704:59–86Google Scholar
  9. 9.
    Oleinick NL, Morris RL, Belichenko I (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci 1:1–21, 22–24CrossRefGoogle Scholar
  10. 10.
    Ion RM, Planner A, Wicktorowicz K et al (1998) The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy. Acta Biochim Pol 45:833–845Google Scholar
  11. 11.
    Ben-Hur E, Rosental I (1985) Phthalocyanines: a new class of mammalian cells photosensitizers with a potential for cancer phototherapy. Int J Radiat Biol Relat Stud Phys Chem Med 47:145–147CrossRefGoogle Scholar
  12. 12.
    Rosenthal I (1991) Phtalocyanines as photodynamic sensitizers. Photochem Photobiol 53:859–870Google Scholar
  13. 13.
    Allen C, Sharman W, Van Lier J (2001) Current status of phthalocyanines in the photodynamic therapy of cancer. J Porphyr Phthalocyanines 5:161–169CrossRefGoogle Scholar
  14. 14.
    Leznof CC, Lever ABP (1989) Phthalocyanines, properties and applications, vols 1–3, 9. VCH Publishers, New YorkGoogle Scholar
  15. 15.
    (a) Smith KM (1975) Synthesis and preparation of porphyrin compounds. Elsevier, Amsterdam; (b) Moser JG (1998) In: Moser JG (ed) Photodynamic tumor therapy. 2nd and 3rd generation. Harwood Academic Publishers, Amsterdam; (c) Moreira LM, dos Santos FV, Lyon JP et al (2008) Photodynamic therapy: porphyrins and phthalocyanines as photosensitizers. Aust J Chem 61(10):741–784Google Scholar
  16. 16.
    Marcus SL, McIntyre WR (2002) Photodynamic therapy systems and applications. Expert Opin Emerg Drugs 7(2):321–327CrossRefGoogle Scholar
  17. 17.
    Oleinick NL, Antunez A, Clay M et al (1993) New phthalocyanine photosensitizers for photodynamic therapy. Photochem Photobiol 57:242–247CrossRefGoogle Scholar
  18. 18.
    Dougherty TJ (1993) Photodynamic therapy. Photochem Photobiol 58:895–900CrossRefGoogle Scholar
  19. 19.
    Siejak A, Wróbel D, Siejak P et al (2009) Spectroscopic and photoelectric investigations of resonance effects in selected sulfonated phthalocyanines. Dyes Pigm 83(3):281–290CrossRefGoogle Scholar
  20. 20.
    Patterson MS, Wilson BC (1999) Photodynamic therapy. In: Dyh JV (ed) The modern technology of radiation oncology. Medical Physics Publishing, MadisonGoogle Scholar
  21. 21.
    Foote CS (1999) Definition of type 1 and type II photosensitized oxidation. Photochem Photobiol 54:869–880Google Scholar
  22. 22.
    Frackowiak D, Planner A, Waszkowiak A et al (2001) Yield of ISC of Pc’s evaluated on the basis of a time-resolved photothermal method. J Photochem Photobiol A Chem 141:101–108CrossRefGoogle Scholar
  23. 23.
    Claessens GC, Blau WJ, Cook M et al (2001) Phthalocyanines and phthalocyanine analogues: the quest for applicable optical properties. Monat Chem 132:3–11CrossRefGoogle Scholar
  24. 24.
    Petrásek Z, Phillips D (2003) A time-resolved study of concentration quenching of disulfonated aluminium phthalocyanine fluorescence. Photochem Photobiol Sci 2:236–244CrossRefGoogle Scholar
  25. 25.
    (a) Berg K, Bommer JC, Moan J (1989) Evaluation of sulfonated aluminum phthalocyanines for use in photochemotherapy. A study on the relative efficiencies of photoinactivation. Photochem Photobiol 49(5):587–594; (b) Rodrigues MMA, Simioni AR, Primo FL et al. (2009) Preparation, characterization and in vitro cytotoxicity of BSA-based nanosphere containing nanosized magnetic particles and/or photosensitizer. J Mag Mag Mater 321(10):1600–1603Google Scholar
  26. 26.
    Nyokong T (2007) Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord Chem Rev 251:1707–1722CrossRefGoogle Scholar
  27. 27.
    Chan VS, Marshall JF, Svensen R, Phillips D, Hart JR (1987) Photosensitising activity of phthalocyanine dyes screened against tissue culture cells. Photochem Photobiol 45:757–761CrossRefGoogle Scholar
  28. 28.
    Darwent JR, Douglas P, Harriman A et al (1982) Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen. Coord Chem Rev 44:83–126CrossRefGoogle Scholar
  29. 29.
    Vincett PS, Voigt EM, Rieckhoff KE (1971) Phosphorescence and fluorescence of phthalocyanines. J Chem Phys 55:4131–4140CrossRefGoogle Scholar
  30. 30.
    Dhami D, Phillips D (1996) Comparison of the photophysics of an aggregating and non-aggregating aluminium phthalocyanines. J Photochem Photobiol A Chem 100:77–84CrossRefGoogle Scholar
  31. 31.
    Edrei R, Gottfried V, Van Lier JE et al (1998) Sulfonated phthalocyanines: photophysical properties, in vitro cell uptake and structure-activity relationships. J Porphyr Phthalocyanines 2:191–199CrossRefGoogle Scholar
  32. 32.
    Ambroz M, Beeby A, MacRobert AJ, Simpson MSC et al (1991) Preparation, analytical and fluorescence spectroscopic studies – of sulphonated aluminium phthalocyanine photosensitizer. J Photochem Photobiol B Biol 9:87–95CrossRefGoogle Scholar
  33. 33.
    Weber J, Busch D (1965) Complexes of 4,4′.4″.4″-tetrasulfophthalocyanine. Inorg Chem 4:469–471CrossRefGoogle Scholar
  34. 34.
    Huang Y, Xu G, Peng Y et al (2007) Zinc phthalocyanine tetrasulfonate (ZnPcS4): a new photosensitizer for photodynamic therapy in choroidal neovascularization. J Ocul Pharmacol Ther 23(4):377–386CrossRefGoogle Scholar
  35. 35.
    Schmidt MH, Meyer GA, Reichert KW et al (2004) Evaluation of photodynamic therapy near functional brain tissue in patients with recurrent brain tumors. J Neurooncol 67:201–207CrossRefGoogle Scholar
  36. 36.
    Josefsen LB, Boyle RW (2008) Photodynamic therapy and the development of metal-based photosensitizers. Met Based Drugs 2008:276109CrossRefGoogle Scholar
  37. 37.
    Wagner JR, Ali H, Langlois R et al (1987) Biological activities of phthalocyanines VI. Photooxidation of l-tryptophan by selectively sulfonated gallium phthalocyanines: singlet oxygen yields and effect of aggregation. Photochem Photobiol 45:587–594CrossRefGoogle Scholar
  38. 38.
    Wohrle W, Iskander N, Graschew G (1990) Synthesis of positively charged phthalocyanines and their activity in the photodynamic therapy of cancer cells. Photochem Photobiol 51:351–356CrossRefGoogle Scholar
  39. 39.
    Ogunsipe A, Nyokong T (2005) Light-induced effects in sulfonated aluminum phthalocyanines – potential photosensitizers in the photodynamic therapy. Photochem Photobiol Sci 4:510–516CrossRefGoogle Scholar
  40. 40.
    Foley MS, Beeby A, Parker AW et al (1997) Excited triplet state photophysics of the sulphonated aluminium phthalocyanines bound to human serum albumin. J Photochem Photobiol B 38(1):10–17CrossRefGoogle Scholar
  41. 41.
    Kuznetsova NA, Gretsova NS, Derkacheva VM et al (2003) Sulphonated phthalocyanines: aggregation and singlet oxygen quantum yield in aqueous solutions. J Porphyr Phthalocyanines 7:147–154CrossRefGoogle Scholar
  42. 42.
    Frackowiak D, Ion RM, Waszkowiak A (2002) Spectral properties of phthalocyanines oriented in stretched polymer films. J Phys Chem B 106:13154–13160CrossRefGoogle Scholar
  43. 43.
    Sharman WM, Allen CM, Van Lier JE (2000) Role of activated oxygen species in photodynamic therapy. Methods Enzymol 319:376–400CrossRefGoogle Scholar
  44. 44.
    (a) Spikes JK (1986) Phtalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors. Photochem Photobiol 43:691–699; (b) de Castro Pazos, Pacheco-Soares C, da Silva NS et al (2003) Ultrastructural effects of two phthalocyanines in CHO-K1 and HeLa cells after laser irradiation. Biocell 27(3):301–309; (c) Kessel D (1997) Subcellular localization of photosensitizing agents. Photochem Photobiol 65:387–388Google Scholar
  45. 45.
    Wrobel D, Boguta A, Wojcik A et al (2005) Time-resolved photocurrent generation in a photoelectrochemical cell with phthalocyanine. Spectrochim Acta Part A Mol Biomol Spectrosc 61(6):1127–1132CrossRefGoogle Scholar
  46. 46.
    Kim JS et al (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470CrossRefGoogle Scholar
  47. 47.
    Oleinick NL, Evans HH (1998) The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res 150(5 Suppl):S146–S156CrossRefGoogle Scholar
  48. 48.
    Nowis D, Makowski M, Stokłosa T et al (2005) Direct tumor damage mechanisms of photodynamic therapy. Acta Biochim Pol 52(2):339–345Google Scholar
  49. 49.
    Triesscheijn M, Baas P, Schellens JHM et al (2006) Photodynamic therapy in oncology. Oncologist 11:1034–1044CrossRefGoogle Scholar
  50. 50.
    Abels C (2004) Targeting of the vascular system of solid tumors by photodynamic therapy (PDT). Lancet Oncol 5:497–508CrossRefGoogle Scholar
  51. 51.
    (a) Vancikova Z (1998) Principles of the photodynamic therapy and its impact on the immune system. Sb Lek 99:1–15; (b) Machado AHA, Soares CP, da Silva NS et al (2009) Cellular and molecular studies of the initial process of the photodynamic therapy in HEp-2 cells using LED light source and two different photosensitizers. Cell Biol Int 33(7):785–795Google Scholar
  52. 52.
    Sibata CH, Colussi VC, Oleinick NL et al (2001) Photodynamic therapy in oncology. Expert Opin Pharmacother 2:1–11CrossRefGoogle Scholar
  53. 53.
    Gad F, Zahra T, Francis KP et al (2004) Targeted photodynamic therapy of established soft tissue infections in mice. Photochem Photobiol Sci 3:451–458CrossRefGoogle Scholar
  54. 54.
    Fingar VH (1996) Vascular effects of photodynamic therapy. J Clin Laser Med Surg 14:323–328Google Scholar
  55. 55.
    Ion RM, Grigorescu M, Scarlat F et al (2001) Porphyrin sensitization of DNA. Rom J Phys 46:637–646Google Scholar
  56. 56.
    Alexandrova R, Stoykova E, Ion RM (2004) Photodynamic therapy of cancer. Exp Pathol Parasitol 7(3):3–23Google Scholar
  57. 57.
    Ion RM (2010) Derivative UV-VIS spectrophotometry for porphyrins interactions in photodynamic therapy. Anal Lett 43(7 & 8):1277–1286CrossRefGoogle Scholar
  58. 58.
    Bown SG, Tralau CJ, Coleridge Smith PD et al (1986) Photodynamic therapy with porphyrin and phthalocyanine sensitisation: Quantitative studies in normal rat liver. Br J Cancer 54:43–52 Google Scholar
  59. 59.
    Ion RM, Fierascu RC, Neagu M et al (2010) Porphyrin (TPP)-polyvinylpyrrolidone (PVP)-fullerene (C60) triad as novel sensitizer in photodynamic therapy. Sci Adv Mater 2(2):223–229(7)CrossRefGoogle Scholar
  60. 60.
    Wrobel D, Boguta A (2002) Study of the influence of substituents on spectroscopic and photoelectric properties of zinc phthalocyanines. J Photochem Photobiol A Chem 150:67–76CrossRefGoogle Scholar
  61. 61.
    Filip AG, Clichici S, Daicoviciu D et al (2011) Possible in vivo mechanisms involved in photodynamic tharapy using tetrapyrrolic macrocycles. Braf J Med Biol Res 44(1):13–61Google Scholar
  62. 62.
    Anbazhagan V, Asha Jhonsi M, Renganathan R (2009) Interaction of meso-tetrakis (p-sulfonatophenyl) porphyrin (TPPS4) with pyrimidines: a steady state and time-resolved fluorescence quenching study. J Mol Struct 919:79–82CrossRefGoogle Scholar
  63. 63.
    (a) Ion RM (1999) Spectral analysis of the porphyrins incorporation into human blood. J Biomed Optics 4:319-327; (b) Ferreira J, Kurachi C, Moriyama LT et al (2006) Correlation between the photostability and photodynamic efficacy for different photosensitizers. 3(2): 91–95CrossRefGoogle Scholar
  64. 64.
    (a) Ion RM, Boda D (2008) Supramolecular nanotubes porphyrin-based generated by aggregation process. Rev Chim (Bucharest) 59(2):205–207; (b) Bonnett R, Martinez G (2001) Photobleaching of sensitizers used in photodynamic therapy. Tetraedron 57:9513–9547; (c) Ion RM, Mandravel C (1997) Some aspects about the porphyrins photodegradation. South J Braz Chem Soc V:111–129Google Scholar
  65. 65.
    Ion RM, Ionita MA, Carstocea et al (2004) Clinical aspects of photodynamic therapy-Romanian experience. Oftalmologia 48(2):53–61Google Scholar
  66. 66.
    Wickens J, Blinder KJ (2006) A preliminary benefit-risk assessment of verteporfin in age-related macular degeneration. Drug Saf 29(3):189–199CrossRefGoogle Scholar
  67. 67.
    Petermeier K, Tatar O, Inhoffen W et al (2006) Verteporfin photodynamic therapy induced apoptosis in choroidal neovascular membranes. Br J Ophthalmol 90:1034–1039CrossRefGoogle Scholar
  68. 68.
    Ionita MA, Ion RM, Carstocea B (2003) Photochemical and photodynamic properties of vitamin B2-riboflavin in liposomes. Oftalmologia 58(3):29–34Google Scholar
  69. 69.
    Ionita MA, Ion RM, Carstocea B et al (2002) Photodynamic occlusion of ocular neovascularization with B2 vitamin. Oftalmologia XLXIV(3):82–86Google Scholar
  70. 70.
    Borgatti-Jeffreys A, Hooser SB, Miller MA et al (2007) Phase I clinical trial of the use of zinc phthalocyanine tetrasulfonate as a photosensitizer for photodynamic therapy in dogs. Am J Vet Res 68(4):399–404CrossRefGoogle Scholar
  71. 71.
    Huang Y, Xu G, Peng Y et al (2009) Photodynamic effects of ZnPcS4-BSA in human retinal pigment epithelium cells. J Ocul Pharmacol Ther 25(3):231–238CrossRefGoogle Scholar
  72. 72.
    Avetisov SE, Budzinskaia MV, Likhvantseva VG et al (2005) The first results of phase IIA of clinical studies of photodynamic therapy for subretinal neovascular membranes with photosense. Vestn Oftalmol 121(5):6–9Google Scholar
  73. 73.
    Josefsen LB, Boyle RW (2008) Photodynamic therapy and the development of metal-based photosensitizers. Met Based Drugs 2008:276109CrossRefGoogle Scholar
  74. 74.
    Miller JW, Stinson WG, Gregory WA et al (1991) Phthalocyanine photodynamic therapy of experimental iris neovascularization. Ophthalmology 98(11):1711–1719Google Scholar
  75. 75.
    Kliman GH, Puliafito CA, Grossman GA et al (1994) Retinal and choroidal vessel closure using phthalocyanine photodynamic therapy. Laser Surg Med 15(1):11–18CrossRefGoogle Scholar
  76. 76.
    Grant WE, Speight PM, MacRobert AJ et al (1994) Photodynamic therapy of normal rat arteries after photosensitisation using disulphonated aluminium phthalocyanine and 5-aminolaevulinic acid. Br J Cancer 70(1):72–78CrossRefGoogle Scholar
  77. 77.
    Lilge L, Portnoy M, Wilson BC (2000) Apoptosis induced in vivo by photodynamic therapy in normal brain and intracranial tumour tissue. Br J Cancer 83(8):1110–1117CrossRefGoogle Scholar
  78. 78.
    Muller PJ, Wilson BC (1996) Photodynamic therapy for malignant newly diagnosed supratentorial gliomas. J Clin Laser Med Surg 14:263–270Google Scholar
  79. 79.
    Muller PJ, Wilson BC (1992) Photodynamic therapy for brain tumors. In: McCaughan JS (ed) A clinical manual: photodynamic therapy of malignancies. RG Landes Co, Boca Raton, pp 201–211Google Scholar
  80. 80.
    Lilge L, Olivo MC, Schatz SW et al (1996) The sensitivity of normal brain and intracranially implanted VX2 tumour to interstitial photodynamic therapy. Br J Cancer 73:332–343CrossRefGoogle Scholar
  81. 81.
    Chen Q, Chopp M, Madigan L et al (1996) Damage threshold of normal rat brain in photo­dynamic therapy. Photochem Photobiol 64:163–167CrossRefGoogle Scholar
  82. 82.
    Farrell TJ, Wilson BC, Patterson MS et al (1998) Comparison of the in vivo photodynamic threshold dose for photofrin, mono- and tetrasulfonated aluminum phthalocyanine using a rat liver model. Photochem Photobiol 68:394–399CrossRefGoogle Scholar
  83. 83.
    Yoshida Y, Dereski MO, Garcia JH et al (1992) Neuronal injury after photoactivation of photofrin II. Am J Pathol 141:989–997Google Scholar
  84. 84.
    Majno G, Joris I (1995) Apoptosis, oncosis and necrosis: an overview of cell death. Am J Pathol 146:3–15Google Scholar
  85. 85.
    White E (1996) Pathway of regulation of apoptosis: overview of apoptosis. Calbiochem Novabiochem Int 1:8–15Google Scholar
  86. 86.
    Wong CS, Van Dyk J, Milosevic M et al (1994) Radiation myelopathy following single courses of radiotherapy and retreatment. Int J Radiat Oncol Biol Phys 30:575–581Google Scholar
  87. 87.
    Schultheiss TE, Kun LE, Ang KK et al (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31:1093–1112CrossRefGoogle Scholar
  88. 88.
    Laperriere NJ, Cerezo L, Milosevic MF et al (1997) Primary lymphoma of brain: results of management of a modern cohort with radiation therapy. Radiother Oncol 43:247–252CrossRefGoogle Scholar
  89. 89.
    Li YQ, Guo YP, Jay V et al (1996) Time course of radiation induced apoptosis in the adult rat spinal cord. Radiother Oncol 39:35–42CrossRefGoogle Scholar
  90. 90.
    Chan WS, Brasseur N, La Madeleine C et al (1996) Evidence for different mechanisms of EMT-6 tumor necrosis by photodynamic therapy with disulphonated aluminum phthalocyanine or photofrin: tumor cell survival and blood flow. Anticancer Res 16:1887–1892Google Scholar
  91. 91.
    (a) Margaron P, Madarnas P, Quellet R et al (1996) Biological activities of phthalocyanines. XVII histopathologic evidence for different mechanisms of EMT-6 tumor necrosis induced by photodynamic therapy with disulfonated aluminum phthalocyanine or photofrin. Anticancer Res 16:613–620; (b) Tyrrell RM (1996) Oxidant, antioxidant status and photocarcinogenesis: the role of gene activation. Photochem Photobiol 63:380–383Google Scholar
  92. 92.
    Medina WSG, dos Santos NAG, Curti C et al (2009) Effects of zinc phthalocyanine tetrasulfonate-based photodynamic therapy on rat brain isolated mitochondria. Chem Biol Interact 179(2–3):402–406CrossRefGoogle Scholar
  93. 93.
    Kostron H, Obwegeser A, Jakober R (1996) Photodynamic therapy in neurosurgery: a review. J Photochem Photobiol B Biol 36:157–168CrossRefGoogle Scholar
  94. 94.
    Lilge L, Ching E, Portnoy M, Molckovsky A, Wilson BC (2000) Photofrin mediated PDT in normal rat brain: assessment of apoptosis as a quantitative biological endpoint. Proc SPIE 3909:45–52CrossRefGoogle Scholar
  95. 95.
    Mahaley MS, Mettlin C, Matarajan N, Law ER, Peace B (1989) National survey of patterns of care for brain-tumour patients. J Neurosurg 71:826–836CrossRefGoogle Scholar
  96. 96.
    Muller P, Wilson B (1991) Photodynamic therapy of brain tumors: postoperative ‘field fractionation’. J Photochem Photobiol B Biol 9:117–119CrossRefGoogle Scholar
  97. 97.
    Origitano TC, Reichman OH (1993) Photodynamic therapy for intracranial neoplasms: development of an image-based computer-assisted protocol for photodynamic therapy of intracranial neoplasms. Neurosurgery 32:587–595CrossRefGoogle Scholar
  98. 98.
    Popovic EA, Kaye AH, Hill JS (1996) Photodynamic therapy of brain tumors. J Clin Laser Med Surg 14:251–261Google Scholar
  99. 99.
    Pascu ML, Popescu A, Carp N et al (2000) Photodynamic therapy studies on brain tumors using nitrogen pulsed lasers. Proc SPIE 4166:140–145Google Scholar
  100. 100.
    Van den Brink-de Vries NA, Beijnen JH et al (2006) Blood–brain barrier and chemotherapeutic treatment of brain tumors. Exp Rev Neurother 6:1199–1209CrossRefGoogle Scholar
  101. 101.
    (a) Danaila L, Pascu ML, Popescu A et al (2000) Spectrophotometric characterization of useful dyes in laser photodynamic therapy of cancer. Proc SPIE 4068:712–718; (b) Pascu ML, Danaila L, Popescu A et al (1999) Researches concerning the application of laser photo­dynamic therapy in neurosurgery. Rom Rep Phys 2:38–45Google Scholar
  102. 102.
    Butler JM, Rapp SR, Shaw EG (2006) Managing the cognitive effects of brain tumor radiation therapy. Curr Treat Options Oncol 7:517–523CrossRefGoogle Scholar
  103. 103.
    Zhang X, Jiang F, Kalkanis SN et al (2006) Combination of surgical resection and photo­dynamic therapy of 9L gliosarcoma in the nude rat. Photochem Photobiol 82:1704–1711Google Scholar
  104. 104.
    Lam M, Oleinick NL, Nieminen AL (2001) Photodynamic therapy-induced apoptosis in epidermoid carcinoma cells. Reactive oxygen species and mitochondrial inner membrane permeabilization. J Biol Chem 276:47379–47386CrossRefGoogle Scholar
  105. 105.
    Madsen SJ, Angell-Petersen E, Spetalen S et al (2006) Photodynamic therapy of newly implanted glioma cells in the rat brain. Lasers Surg Med 38:540–548CrossRefGoogle Scholar
  106. 106.
    Liu W, Chen N, Jin H et al (2007) Intravenous repeated-dose toxicity study of ZnPcS2P2-based-photodynamic therapy in beagle dogs. Regul Toxicol Pharmacol 47:221–231CrossRefGoogle Scholar
  107. 107.
    (a) Schmidt MH, Meyer GA, Reichert KW et al (2004) Evaluation of photodynamic therapy near functional brain tissue in patients with recurrent brain tumors. J Neurooncol 67:201– 207; (b) Dereski MO, Madigan L, Chopp M (1995) Brain response to photodynamic therapy with Photofrin, nonsulfonated aluminum phthalocyanine and tin purpurin. Proc SPIE 2371:579–581Google Scholar
  108. 108.
    Hopper C, Kubler A, Lewis H et al (2004) mTHPC mediated photodynamic therapy for early oral squamous cell carcinoma. Int J Cancer 111:138–146CrossRefGoogle Scholar
  109. 109.
    (a) Allen CM, Langlois R, Sharman WM et al (2002) Photodynamic properties of amphiphilic derivates of aluminum tetrasulfophthalocyanine. Photochem Photobiol 76(2):208–216; (b) Ketabchi A, MacRobert A, Speight PM et al (1998) Induction of apoptotic cell death by photodynamic therapy in human keratinocytes. Arch Oral Biol 43(2):143–149; (c) Dilkes MG, Benjamin E, Ovaisi S et al (2003) Treatment of primary mucosal head and neck squamous cell carcinoma using photodynamic therapy: results after 25 treated cases. J Laryng Otol 117:713–717Google Scholar
  110. 110.
    Peng Q, Moan J, Nesland JM et al (1990) Aluminum phthalocyanines with asymmetrical lower sulfonation and with symmetrical higher sulfonation: a comparison of localizing and photosensitizing mechanism in human tumor LOX xenografts. Int J Cancer 46(4):719–726CrossRefGoogle Scholar
  111. 111.
    Inés Yslas E, Prucca C, Romanini S et al (2009) Biodistribution and phototherapeutic pro­perties of Zinc (II) 2,9,16,23-tetrakis (methoxy) phthalocyanine in vivo. Photodiagn Photodyn Ther 6:62–70CrossRefGoogle Scholar
  112. 112.
    (a) Spencer JM, Henry M. (2010) Actinic keratosis. eMedi cine:; (b) Boda D, Neagu M, Constantin C et al (2009) New photosensitizers versus aminolevulinic acid (ALA) in experimental photodynamic therapy of actinic keratosis – A case report. Anal Sci Univ AI Cuza Gen Molec Biol X:61–69
  113. 113.
    Kiesslich T, Krammer B, Plaetzer K (2006) Cellular mechanisms and prospective applications of hypericin in photodynamic therapy. Curr Med Chem 13:2189–2204CrossRefGoogle Scholar
  114. 114.
    Berlanda J, Kiesslich T, Oberdanner CB et al (2006) Characterization of apoptosis induced by photodynamic treatment with hypericin in A431 human epidermoid carcinoma cells. J Environ Pathol Toxicol Oncol 25:173–188Google Scholar
  115. 115.
    Berg K, Bommer JC, Moan J (1989) Evaluation of sulfonated aluminum phthalocyanines for use in photochemotherapy. A study on the relative efficiencies of photoinactivation. Photochem Photobiol 49:587–594CrossRefGoogle Scholar
  116. 116.
    Love WG, Havenaar EC, Lowe PJ et al (1994) Uptake of zinc(II)- phthalocyanine by HepG2 cells expressing the low density lipoprotein receptor: studies with the liposomal formulation CGP55847. Proc SPIE 2078:381–388CrossRefGoogle Scholar
  117. 117.
    Neagu M, Manda C, Constantin C et al (2007) Structural differences of porphyrins in photodynamic therapy induces distinct antineoplastic effects. J Porphyr Phthalocyanines 01:58–67CrossRefGoogle Scholar
  118. 118.
    Guery JC, Sette A, Dragomir A et al (1992) Selective immunosuppression by administration of major histocompatibility complex (MHC) class II-binding peptides. I evidence for in vivo MHC blocade preventing T cell activation. J Exp Med 175:1345–1354CrossRefGoogle Scholar
  119. 119.
    Vermes I, Haanen C, Steffens-Nakken H et al (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled Annexin V. J Immunol Methods 184:39–51CrossRefGoogle Scholar
  120. 120.
    Fernandes-Alnemri T, Armstrong RC, Krebs J et al (1996) In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci USA 93:7464–7469CrossRefGoogle Scholar
  121. 121.
    Shapiro HM (2001) Optical measurement in cytometry: light scattering, extinction, absorption and fluorescence. Methods Cell Biol 63:107–129CrossRefGoogle Scholar
  122. 122.
    Weaver JL (2000) Introduction to flow cytometry. Methods 21:199–201CrossRefGoogle Scholar
  123. 123.
    Tănase C, Codorean E, ArdeleanuC et al (2004) Experimental Model of Antitumoral Photodynamic Therapy with Phthalocyanines – Pathological Evaluation. In: Soares F, Vassallo J, Bleggi Torres LF (eds) Proc. 2nd Intercontinental Congress of Pathology, pp 117–120Google Scholar
  124. 124.
    (a) Chan WS, Marshall JF, Svensen R et al (1987) Photosensitizing activity of phthalocyanine dyes screened against tissue culture cells. Photochem Photobiol 45:757–761; (b) van Bruggen N, Chan WS, Syha J et al (1992) Cell and tissue response of a murine tumour to phthalocyanine-mediated photodynamic therapy. Eur J Cancer 28:4246–4249; (c) Perrin Tamietti BF, Machado AHA, Maftoum-Costa M et al (2007) Analysis of mitochondrial activity related to cell death after PDT with AlPcS4. Photomed Laser Surg 25(3):175–179Google Scholar
  125. 125.
    Simstein R, Burow M, Parker A et al (2003) Apoptosis, chemoresistance, and breast cancer: insight from the MCF-7 cell model system. Exp Biol Med 228:995–1003Google Scholar
  126. 126.
    (a) Alexandrova R, Stoykova E, Ion RM et al (2005) In vitro cytotoxicity assessment of phthalocyanines on virus-transformed animal cells. Proc SPIE 5830:404–408; (b) Rumie Vittar NB, Awruch J, Azizuddin K et al (2010) Caspase-independent apoptosis, in human MCF-7c3 breast cancer cells, following PDT, with a novel water-soluble phthalocyanine. Int J Biochem Cell Biol 42:1123–1131Google Scholar
  127. 127.
    Yslas EI, Prucca C, Romanini S et al (2009) Biodistribution and phototherapeutic properties of Zinc (II) 2, 9, 16, 23-tetrakis (methoxy) phtalocyanine in vivo. Photodiagn Photodyn Ther 6(1):62–70CrossRefGoogle Scholar
  128. 128.
    Alexandrova R, Sabotinov O, Stoykova E et al (2004) In vitro cytotoxicity assessment of [5,10,15,20-tetra (4-sulfophenyl) porphyrin] on tumor and non-tumor cell lines. Proc SPIE 5449:227–234CrossRefGoogle Scholar
  129. 129.
    Perzelova A, Macicova I, Mraz P et al (1998) Characterization of two new permanent glioma cell lines 8-MG-BA and 42-MG-BA. Neoplasma 42:25–29Google Scholar
  130. 130.
    Pop SF, Ion RM, Neagu M et al (2010) Photodynamic therapy on B16 cells with tetrasulphonated porphyrin and different light sources. J Mater Sci Eng 4(3):10–16Google Scholar
  131. 131.
    Wang JC (2009) Untangling the double helix. DNA entanglement and the action of the DNA topoisomerases. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  132. 132.
    Spitzner JR, Muller MT (1988) A consensus sequence for cleavage by vertebrate DNA topoisomerase II. Nucleic Acids Res 16(12):5533–5556CrossRefGoogle Scholar
  133. 133.
    Muller MT, Spitzner JR, DiDonato JA et al (1988) Single-strand DNA cleavages by eukaryotic topoisomerase II. Biochemistry 27(22):8369–8379CrossRefGoogle Scholar
  134. 134.
    Brown WM (1980) Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. PNAS 77(6):3605–3609CrossRefGoogle Scholar
  135. 135.
    Chan WS, West CML, Moore JV et al (1991) Photocytotoxic efficacy of sulphonated species of aluminium phthalocyanine against cell monolayers, multicellular spheroids and in viva tumours. Br J Cancer 64:827–832CrossRefGoogle Scholar
  136. 136.
    van Lier JB (1990) Phthalocyanines as photodynamic sensitizers. In: Kessel D (ed) Photodynamic therapy of neoplastic disease, vol 1. CRC Press, Boca Raton, pp 279–291Google Scholar
  137. 137.
    Tralau CJ, MacRobert AJ, I’D C-S et al (1987) Photodynamic therapy with phthalo­cyanine sensitization: quantitative studies in a transplantable rat fibrosarcoma. Br J Cancer 55:389–395CrossRefGoogle Scholar
  138. 138.
    Chan WS, Marshall JF, Hart IR (1987) Photodynamic therapy of a murine tumour following sensitization with chloro aluminum sulfonated phthalocyanine. Photochem Photobiol 46:867–871CrossRefGoogle Scholar
  139. 139.
    Brasseur N, Ali H, Langlois R et al (1987) Biological activities of phthalocyanines-V. Photodynamic therapy of EMT6 mammary tumours in mice with sulfonated phthalocyanines. Photochem Photobiol 45:581–586CrossRefGoogle Scholar
  140. 140.
    Milanesi C, Zhou C, Biolo R et al (1990) Zn(II)-phthalocyanine as a photodynamic agent for turnouts. II. Studies on the mechanism of photosensitised tumour necrosis. Br J Cancer 61:846–850CrossRefGoogle Scholar
  141. 141.
    Ben-Hur E, Rosenthal I (1986) Photosensitization of Chinese hamster cells by water-soluble phthalocyanines. Photochem Photobiol 43:615–619CrossRefGoogle Scholar
  142. 142.
    Canti G, France P, Marelli O et al (1990) Comparative study of the therapeutic effect of photoactivated hematoporphyrin derivative and aluminium disulfonated phthalocyanines on tumor bearing mice. Cancer Lett 53:123–127CrossRefGoogle Scholar
  143. 143.
    I’ M, Madarnas P, Ouellet R et al (1996) Biological activities of phthalocyanines XVII. Histopathological evidence for different mechanisms of EMT-6 tumor necrosis induced by photodynamic therapy with disulfonated aluminum phthalocyanine or photofrin. Anticancer Res 16:613–620Google Scholar
  144. 144.
    Ali H, Langlois R, Wagner JR et al (1988) Biological activities of phthalocyanines-X. Synthesis and analyses of sulfonated phthalocyanines. Photochem Photobiol 47:713–717CrossRefGoogle Scholar
  145. 145.
    Boyle RW, Leznoff CC, van Lier JE (1993) Biological activities of phthalocyanines–XVI. Tetrahydroxy- and tetraalkylhydroxy zinc phthalocyanines. Effect of alkyl chain length on in vitro and in vivo photodynamic activities. Br J Cancer 67(6):1177–1181CrossRefGoogle Scholar
  146. 146.
    Brasseur N, Ali H, Langlois R et al (1987) Biological activities of phthalocyanines-VII. Photoinactivation of V-79 Chinese hamster cells, by selectively sulfonated gallium phthalocyanines. Photochem Photobiol 46:739–745CrossRefGoogle Scholar
  147. 147.
    Brasseur N, Ali H, Langlois R et al (1987) Biological activities of ohthalocyanines-V. Phoiodynamic therapy of EMT-i mammary tumors in mice with sulfonated phthalocyanines. Photochem Photobiol 45:581–590CrossRefGoogle Scholar
  148. 148.
    Brasseur N, Ali H, Langlois R et al (1988) Biological activities of phthalocyanines-IX. Photosensitization of V-79 Chinese hamster cells and EMT-6 mouse mammary tumor by selectively sulfonated zinc phthalocyanines. Photochem Photobiol 41:705–712CrossRefGoogle Scholar
  149. 149.
    Rousseau J, Boyle RW, Maclennan AH et al (1991) Biodistribution and tumor uptake of [67Ga]chlorogallium-tetraoctadecyloxy phthalocyanine and its sulfonation products in tumor bearing C3H mice. 1991. Int J Radiat Appl Instrum Part B Nucl Med Biol 18(7):777–782Google Scholar
  150. 150.
    Langlois R, Ali H, Brasseur N et al (1986) Biological activities of phthalocyanines-IV. Type II sensitized photooxidation of L-tryptophan and cholesterol by sulfonated metallophthalocyanines. Photochem Photobiol 44:117–125CrossRefGoogle Scholar
  151. 151.
    Winkelman J, Spicer SS (1962) The metachromatic interaction of biebrich scarlet with histone and other cationic polymers. J Histochem Cytochem 11(4):489–492CrossRefGoogle Scholar
  152. 152.
    Kim HR, Luo Y, Li G et al (1999) Enhanced apoptotic response to photodynamic therapy with bcl-2 transfection. Cancer Res 59:3429–3432Google Scholar
  153. 153.
    Kessel D, Castelli M (2001) Evidence that bcl-2 is the target of three photosensitizers that induce a rapid apoptotic response. Photochem Photobiol 74:318–322CrossRefGoogle Scholar
  154. 154.
    Morris RL, Azizuddin K, Lam M et al (2003) Fluorescence resonance energy transfer reveals a binding site of a photosensitizer for photodynamic therapy. Cancer Res 63:5194–5197Google Scholar
  155. 155.
    Usuda J, Chiu SM, Azizuddin K et al (2002) Promotion of photodynamic therapy-induced apoptosis by the mitochondrial protein Smac/DIABLO: dependence on Bax. Photochem Photobiol 76:217–223CrossRefGoogle Scholar
  156. 156.
    Xue L, He J, Oleinick NL (1999) Promotion of photodynamic therapy-induced apoptosis by stress kinases. Cell Death Differ 6:855–864CrossRefGoogle Scholar
  157. 157.
    Xue LY, Chiu SM, Oleinick NL (2001) Photodynamic therapy-induced death of MCF-7 human breast cancer cells: a role for caspase-3 in the late steps of apoptosis but not for the critical lethal event. Exp Cell Res 263:145–155CrossRefGoogle Scholar
  158. 158.
    Xue LY, Chiu SM, Oleinick NL (2001) Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene 20:3420–3427CrossRefGoogle Scholar
  159. 159.
    Xue LY, Qiu Y, He J et al (1999) Etk/Bmx, a PH-domain containing tyrosine kinase, protects prostate cancer cells from apoptosis induced by photodynamic therapy or thapsigargin. Oncogene 18:3391–3398CrossRefGoogle Scholar
  160. 160.
    Furre IE, Shahzidi S, Luksiene Z et al (2005) Targeting PBR by hexaminolevulinate-mediated photodynamic therapy induces apoptosis through translocation of apoptosis-inducing factor in human leukemia cells. Cancer Res 65:11051–11060CrossRefGoogle Scholar
  161. 161.
    Ichinose S, Usuda J, Hirata T et al (2006) Lysosomal cathepsin initiates apoptosis, which is regulated by photodamage to Bcl-2 at mitochondria in photodynamic therapy using a novel photosensitizer, ATX-s10 (Na). Int J Oncol 29:349–355Google Scholar
  162. 162.
    Ji Z, Yang G, Vasovic V et al (2006) Subcellular localization pattern of protoporphyrin IX is an important determinant for its photodynamic efficiency of human carcinoma and normal cell lines. J Photochem Photobiol B Biol 84:213–220CrossRefGoogle Scholar
  163. 163.
    Kessel D (2002) Relocalization of a cationic porphyrin during photodynamic therapy. Photochem Photobiol Sci 1:837–840CrossRefGoogle Scholar
  164. 164.
    Kessel D, Luo Y (2005) Intracellular sites of photodamage as a factor in apoptotic cell death. J Porphyr Phthalocyanines 5:181–184CrossRefGoogle Scholar
  165. 165.
    Kriska T, Korytowski W, Girotti AW (2002) Hyperresistance to photosensitized lipid peroxidation and apoptotic killing in 5-aminolevulinate-treated tumor cells overexpressing mitochondrial GPX4. Free Radic Biol Med 33:1389–1402CrossRefGoogle Scholar
  166. 166.
    Zawacka-Pankau J, Issaeva N, Hossain S et al (2007) Protoporphyrin IX interacts with wild-type p53 protein in vitro and induces cell death of human colon cancer cells in a p53-dependent and independent manner. J Biol Chem 282:2466–2473CrossRefGoogle Scholar
  167. 167.
    Moan J, Berg K (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53:549–553CrossRefGoogle Scholar
  168. 168.
    Kessel D, Luo Y, Deng Y, Chang CK (1997) The role of subcellular localization in initiation of apoptosis by photodynamic therapy. Photochem Photobiol 65:422–426CrossRefGoogle Scholar
  169. 169.
    Xue LY, Chiu SM, Fiebig A et al (2003) Photodamage to multiple Bcl-xL isoforms by photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene 22:9197–9204CrossRefGoogle Scholar
  170. 170.
    Yslas EI, Prucca C, Romanini S et al (2009) Biodistribution and phototherapeutic properties of Zinc (II) 2, 9, 16, 23-tetrakis (methoxy) phtalocyanine in vivo. Photodiagn Photodyn Ther 6(1):62–70CrossRefGoogle Scholar
  171. 171.
    Krestyn E, Kolarova H, Bajgar R et al (2010) Photodynamic properties of ZnTPPS4, ClAlPcS2 and ALA in human melanoma G361 cells. Toxicol In Vitro 24:286–291CrossRefGoogle Scholar
  172. 172.
    (a) Liu MO, Tai CH, Sain MZ et al (2004) Photodynamic applications of phthalocyanines. J Photochem Photobiol A: Chem 165:131–136; (b) Machado AH, Braga FM, Soares CP et al (2007) Photodynamic therapy a new photosensitizing agent. Photomed Laser Surg 25(3):220–228Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Analytical DepartmentNational Institute of R&D for Chemistry and Petrochemistry – ICECHIMBucharestRomania
  2. 2.Faculty of Materials Engineering, Mecathronics and RoboticsValahia UniversityTargovisteRomania

Personalised recommendations