Spintronics pp 97-114 | Cite as

Correlation and Chemical Disorder in Heusler Compounds: A Spectroscopical Study

  • Jürgen Braun
  • Hubert Ebert
  • Ján Minár


The first part of this study deals with the effects of local electronic correlations and alloying on the properties of the Heusler compound Co2Mn1−x Fe x Si. The analysis has been performed by means of first-principles band-structure calculations based on the local approximation to spin-density functional theory (LSDA) as well as photoemission calculations within the one-step model of photoemission. Correlation effects are treated using the Dynamical Mean-Field Theory (DMFT) and the LSDA+U approach. The formalism is implemented within the Korringa–Kohn–Rostoker (KKR) Green’s function method. In satisfactory agreement with available experimental data the magnetic and spectroscopic properties of Co2Mn1−x Fe x Si are explained in terms of strong electronic correlations. In addition the correlation effects have been analyzed separately with respect to their static or dynamical origin. To achieve a quantitative description of the electronic structure of Co2Mn1−x Fe x Si both static and dynamic correlations must be treated on equal footing. Furthermore, we report on our investigation of the spin-dependent electronic structure of ordered NiMnSb as well as of the disordered Ni x Mn1−x Sb alloy system. As a first point we studied the magneto-optical Kerr effect in ordered NiMnSb to extract information on the bulk-related electronic structure of this compound. In addition the influence of chemical disorder on the unoccupied electronic density of states was investigated by use of the ab-initio Coherent Potential Approximation method. These results are used for a detailed discussion of spin-resolved Appearance Potential Spectroscopy measurements. Our theoretical approach describes the spectra as the fully relativistic self-convolution of the matrix-element weighted, orbitally resolved density of states. The analysis is completed by one-step photoemission calculations focusing on the surface electronic structure of ordered NiMnSb(001).


Fermi Level Spin Polarization Heusler Alloy Spin Asymmetry Heusler Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft DFG (FOR1346) and the BMBF (05K10WMA).


  1. 1.
    Heusler F (1903) Verh Dtsch Phys Ges 5:219 Google Scholar
  2. 2.
    de Groot RA, Mueller FM, van Engen PG, Buschow KHJ (1983) Phys Rev Lett 50:2024 CrossRefGoogle Scholar
  3. 3.
    Mavropoulos Ph, Sato K, Zeller R, Dederichs PH, Popescu V, Ebert H (2004) Phys Rev B 69:054424 CrossRefGoogle Scholar
  4. 4.
    Fang CM, de Wijs GA, de Groot RA (2002) J Appl Phys 91:8340 CrossRefGoogle Scholar
  5. 5.
    Orgassa D, Fujiwara D, Schulthess TC, Butler WH (1999) Phys Rev B 60:13237 CrossRefGoogle Scholar
  6. 6.
    Soulen RJ, Byers JM Jr., Osofsky MS, Nadgorny B, Ambrose T, Cheng SF, Broussard PR, Tanaka CT, Nowak J, Moodera JS, Barry A, Coey JMD (1998) Science 282:85 CrossRefGoogle Scholar
  7. 7.
    Raphael MP, Ravel B, Willard MA, Cheng SF, Das BN, Stroud RM, Bussmann KM, Claassen JH, Harris VG (2001) Appl Phys Lett 79:4396 CrossRefGoogle Scholar
  8. 8.
    Brown PJ, Neumann KU, Webster PJ, Ziebeck KRA (2000) J Phys: Condens Matter 12:1827 CrossRefGoogle Scholar
  9. 9.
    Kübler J, William AR, Sommers CB (1983) Phys Rev B 28:1745 CrossRefGoogle Scholar
  10. 10.
    Felser C, Fecher GH, Balke B (2007) Angew Chem Int Ed 46:668 CrossRefGoogle Scholar
  11. 11.
    Fuji S, Sugimura S, Ishida S, Asano S (1990) J Phys Cond Matt 2:8583 CrossRefGoogle Scholar
  12. 12.
    Brown PJ, Normann KU, Webster PJ, Ziebeck KRA (2000) J Phys Cond Matt 12:1827 CrossRefGoogle Scholar
  13. 13.
    Fecher GH, Kandpal HC, Wurmehl S, Felser C, Schönhense G (2006) J Appl Phys 99:08J106 CrossRefGoogle Scholar
  14. 14.
    Kübler J, Fecher GH, Felser C (2007) Phys Rev B 76:024414 CrossRefGoogle Scholar
  15. 15.
    Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C, Lin HJ, Morais J (2005) Phys Rev B 72:184434 CrossRefGoogle Scholar
  16. 16.
    Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C, Lin HJ (2006) Appl Phys Lett 88:032503 CrossRefGoogle Scholar
  17. 17.
    Kandpal HC, Fecher GH, Felser C (2006) Phys Rev B 73:094422 CrossRefGoogle Scholar
  18. 18.
    Balke B, Fecher GH, Kandpal HC, Felser C, Kobayashi K, Ikenaga E, Kim JJ, Ueda S (2006) Phys Rev B 74:104405 CrossRefGoogle Scholar
  19. 19.
    Kübler J (2000) Theory of itinerant electron magnetism. Clarendon Press, Oxford Google Scholar
  20. 20.
    Garibay-Alonso R, Dorantes-Davila J, Pastor GM (2002) J Appl Physics 91:8254 CrossRefGoogle Scholar
  21. 21.
    Kandpal HC, Fecher GH, Felser C, Schönhense G (2006) Phys Rev B 73:094422 CrossRefGoogle Scholar
  22. 22.
    Fecher GH, Balke B, Ouardi S, Felser C, Schönhense G, Ikenaga E, Kim J, Ueda S, Kobayashi K (2007) J Phys D: Appl Phys 40:1576 CrossRefGoogle Scholar
  23. 23.
    Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943 CrossRefGoogle Scholar
  24. 24.
    Czyżyk MT, Sawatzky GA (1994) Phys Rev B 49:14211 CrossRefGoogle Scholar
  25. 25.
    Kotliar G, Savrasov SY, Haule K, Oudovenko VS, Parcollet O, Marianetti CA (2006) Rev Mod Phys 78:865 CrossRefGoogle Scholar
  26. 26.
    Lichtenstein AI, Katsnelson MI, Kotliar G (2001) Phys Rev Lett 87:067205 CrossRefGoogle Scholar
  27. 27.
    Grechnev A, Di Marco I, Katsnelson MI, Lichtenstein AI, Wills J, Eriksson O (2006) cond-mat, page 0610621 Google Scholar
  28. 28.
    Perlov A, Chadov S, Ebert H (2003) Phys Rev B 68:245112 CrossRefGoogle Scholar
  29. 29.
    Minár J, Ebert H, De C, ı N, Brookes NB, Venturini F, Ghiringhelli G, Chioncel L, Katsnelson MI, Lichtenstein AI (2005) Phys Rev Lett 95:166401 CrossRefGoogle Scholar
  30. 30.
    Braun J, Minár J, Ebert H, Katsnelson MI, Lichtenstein AI (2006) Phys Rev Lett 97:227601 CrossRefGoogle Scholar
  31. 31.
    Chadov S, Minár J, Katsnelson MI, Ebert H, Ködderitzsch D, Lichtenstein AI (2008) Europhys Lett 82:37001 CrossRefGoogle Scholar
  32. 32.
    Katsnelson MI, Lichtenstein AI (2002) Eur Phys J B 30:9 CrossRefGoogle Scholar
  33. 33.
    Chioncel L, Sakuraba Y, Arrigoni E, Katsnelson MI, Oogane M, Ando Y, Miyazaki T, Burzo E, Lichtenstein AI (2008) Phys Rev Lett 100:086402 CrossRefGoogle Scholar
  34. 34.
    Irkin VYu, Katsnelson MI, Lichtenstein AI (2007) J Phys Cond Matt 19:315201 CrossRefGoogle Scholar
  35. 35.
    Ishida S, Fuji S, Kashiwagi S, Asanor S (1995) J Phys Soc Jap 64:2152 CrossRefGoogle Scholar
  36. 36.
    Park R, Houston JE (1972) Phys Rev 6:1073 Google Scholar
  37. 37.
    Ertl K, Vonbank M, Dose V, Noffke J (1993) Solid State Commun 88:557 CrossRefGoogle Scholar
  38. 38.
    Reinmuth J, Passek F, Petrov VN, Donath M, Popescu V, Ebert H (1997) Phys Rev B 56:12893 CrossRefGoogle Scholar
  39. 39.
    Minár J, Chioncel L, Perlov A, Ebert H, Katsnelson MI, Lichtenstein AI (2005) Phys Rev B 72:45125 CrossRefGoogle Scholar
  40. 40.
    Pourovskii LV, Katsnelson MI, Lichtenstein AI (2005) Phys Rev B 72:115106 CrossRefGoogle Scholar
  41. 41.
    Drchal V, Janis̆ V, Kudrnovsky J (2002) Physica B 312–313:519 CrossRefGoogle Scholar
  42. 42.
    Chadov S, Minár J, Ebert H, Perlov A, Chioncel L, Katsnelson MI, Lichtenstein AI (2006) Phys Rev B 74:R140411 CrossRefGoogle Scholar
  43. 43.
    Minár J, Chadov S, Ebert H, Chioncel L, Lichtenstein A, de Nadaï C, Brookes NB (2005) Nucl Inst Meth Phys Res A 547:151 CrossRefGoogle Scholar
  44. 44.
    Gyorffy BL (1972) Phys Rev B 5:2382 CrossRefGoogle Scholar
  45. 45.
    Butler WH (1985) Phys Rev B 31:3260 CrossRefGoogle Scholar
  46. 46.
    Ebert H, Battocletti M (1996) Solid State Commun 98:785 CrossRefGoogle Scholar
  47. 47.
    Ebert H, Schwitalla J (1997) Phys Rev B 55:3100 CrossRefGoogle Scholar
  48. 48.
    Kolev H, Rangelov G, Braun J, Donath M (2005) Phys Rev B 72:104415 CrossRefGoogle Scholar
  49. 49.
    Donath M, Rangelov G, Braun J, Grentz W (2005) Magnetization, spin polarization and electronic structure of NiMnSb surfaces. In: Donath M, Nolting W (eds) Local-moment ferromagnets: unique properties for modern applications. Lecture notes in physics, vol 678. Springer, Berlin, p 261 CrossRefGoogle Scholar
  50. 50.
    Ebert H et al The Munich SPR-KKR package, version 3.6.
  51. 51.
    Ebert H (2000) Fully relativistic band structure calculations for magnetic solids – formalism and application. In: Dreyssé H (ed) Electronic structure and physical properties of solids. Lecture notes in physics, vol 535. Springer, Berlin, p 191 CrossRefGoogle Scholar
  52. 52.
    Balke B, Fecher GH, Kandpal HC, Felser C (2006) Phys Rev B 74:104405 CrossRefGoogle Scholar
  53. 53.
    Chadov S, Fecher GH, Felser C, Minar J, Braun J, Ebert H (2009) J Phys D: Appl Phys 42:084002 CrossRefGoogle Scholar
  54. 54.
    Ebert H (1996) Rep Prog Phys 59:1665 CrossRefGoogle Scholar
  55. 55.
    Tomczak JM, Biermann S (2009) Phys Rev B 80:085117 CrossRefGoogle Scholar
  56. 56.
    Katsnelson MI, Irkhin VYu, Chioncel L, Lichtenstein AI, de Groot RA (2008) Rev Mod Phys 80:315 CrossRefGoogle Scholar
  57. 57.
    van Engen PG, Buschow KHJ, Jongebreur R, Erman M (1983) Appl Phys Lett 42:202 CrossRefGoogle Scholar
  58. 58.
    van Engen PG (1983) Ph.D. thesis, Tech. Uni. Delft Google Scholar
  59. 59.
    Ohyama R, Koyanagi T, Matsubara K (1987) J Appl Phys 61:2347 CrossRefGoogle Scholar
  60. 60.
    van Engelen PPJ, de Mooij DB, Wijngaard JH, Buschow KHJ (1994) J Magn Magn Mat 130:247 CrossRefGoogle Scholar
  61. 61.
    van Ek J, Maclaren JM (1997) Phys Rev B 56:R2924 CrossRefGoogle Scholar
  62. 62.
    Kautzky MC, Clemens BM (1995) Appl Phys Lett 66:1279 CrossRefGoogle Scholar
  63. 63.
    Oppeneer PM, Antonov VN, Kraft T, Eschrig H, Yaresko AN, Perlov AY (1995) Solid State Comm 94:255 CrossRefGoogle Scholar
  64. 64.
    Antonov VN, Oppeneer PM, Yaresko AN, Perlov AYa, Kraft T (1997) Phys Rev B 56:13012 CrossRefGoogle Scholar
  65. 65.
    Gao X, Woolam JA, Kirby RD, Sellmyer DJ, Tanaka CT, Nowak J, Moodera JS (1999) Phys Rev B 59:9965 CrossRefGoogle Scholar
  66. 66.
    Picozzi S, Continenza A, Freeman AJ (2006) J Phys D: Appl Phys 39:851 CrossRefGoogle Scholar
  67. 67.
    Kulatov ET, Uspenskii YA, Halilov SV (1994) Phys Lett A 125:267 CrossRefGoogle Scholar
  68. 68.
    Uspenskii YA, Kulatov ET, Khalilov SV (1995) JETP 80:952 Google Scholar
  69. 69.
    Minar J, Braun J, Bornemann S, Ebert H (2009) J Phys D: Appl Phys 42:084009 CrossRefGoogle Scholar
  70. 70.
    Hopkinson JFL, Pendry JB, Titterington DJ (1980) Comp Phys Commun 19:69 CrossRefGoogle Scholar
  71. 71.
    Braun J (1996) Rep Prog Phys 59:1267 CrossRefGoogle Scholar
  72. 72.
    Correa JS, Eibl Ch, Rangelov G, Braun J, Donath M (2006) Phys Rev B 73:125316 CrossRefGoogle Scholar
  73. 73.
    Jenkins SJ, King DA (2001) Surf Sci 494:L793 CrossRefGoogle Scholar
  74. 74.
    Jenkins SJ, King DA (2002) Surf Sci 501:L185 CrossRefGoogle Scholar
  75. 75.
    Schäfer J, Hoinkis M, Rotenberg E, Blaha P, Claessen R (2005) Phys Rev B 72:155115 CrossRefGoogle Scholar
  76. 76.
    Eickhoff Ch, Kolev H, Donath M, Rangelov G, Chi LF (2007) Phys Rev B 76:205440 CrossRefGoogle Scholar
  77. 77.
    de Wijs GA, de Groot RA (2001) Phys Rev B 64:020402 CrossRefGoogle Scholar
  78. 78.
    Fonin M, Dedkov YuS, Rüdiger U, Güntherodt G (2005) Growth and room temperature spin polarization of half-metallic epitaxial CrO2 and Fe3O4 thin films. In: Donath M, Nolting W (eds) Local-moment ferromagnets: unique properties for modern applications. Lecture notes in physics, vol 678. Springer, Berlin, p 289 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department ChemieLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations