Spintronics pp 45-59 | Cite as

Crystal Structure of Heusler Compounds

  • Tanja Graf
  • Claudia FelserEmail author


Heusler compounds are promising materials in many fields of contemporary research. The spectrum of their possible applications ranges from magnetic and magneto-mechanical materials over semiconductors and thermoelectrics to superconductors. An important feature of the Heusler compounds is the possibility of controlling the valence electron concentration by partial substitution of elements. On the other hand, the properties also depend on the degree of ordering of the crystal structure. In general, Heusler compounds crystallize in the Cu2MnAl-type structure but in many cases certain types of disorder are observed. In this chapter, a detailed description of the crystal structure as well as different types of atomic disorder are given. Furthermore, the relationship of the chemical ordering and the spin polarization is discussed and useful experimental methods for the structural analysis of Heusler compounds are presented.


Spin Polarization Atomic Disorder Heusler Compound Wyckoff Position Tetrahedral Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to B. Balke, C.G.F. Blum, F. Casper, G.H. Fecher, V. Jung, V. Ksenofontov, J. Winterlik, and S. Wurmehl for providing data and for fruitful discussions. Financial support by the Deutsche Forschungsgemeinschaft (research unit 559) and by the Graduate School of Excellence “Material Science in Mainz” is gratefully acknowledged.


  1. 1.
    Heusler F (1903) Verh Dtsch Phys Ges 5:219 Google Scholar
  2. 2.
    Heusler F, Starck W, Haupt E (1903) Verh Dtsch Phys Ges 5:220 Google Scholar
  3. 3.
    Heusler O (1934) Ann Phys 19:155 CrossRefGoogle Scholar
  4. 4.
    Bradley AJ, Rodgers JW (1934) Proc R Soc A 144:340 CrossRefGoogle Scholar
  5. 5.
    Webster PJ (1971) J Phys Chem Solids 32:1221 CrossRefGoogle Scholar
  6. 6.
    Brooks JS, Williams JM (1975) Phys Status Solidi A 32:413 CrossRefGoogle Scholar
  7. 7.
    Kübler J, Williams AR, Sommers CB (1983) Phys Rev B 28:1745 CrossRefGoogle Scholar
  8. 8.
    Surikov VV, Zhordochkin VN, Astakhova TY (1990) Hyperfine Interact 59:469 CrossRefGoogle Scholar
  9. 9.
    Lakshmi N, Pandey A, Venugopalan K (2002) Bull Mater Sci 25:309 CrossRefGoogle Scholar
  10. 10.
    Wu F, Mizukami S, Watanabe D, Naganuma H, Oogane M, Ando Y, Miyazaki T (2009) Appl Phys Lett 95:122503 CrossRefGoogle Scholar
  11. 11.
    Wu F, Mizukami S, Watanabe D, Sajitha EP, Naganuma H, Oogane M, Ando Y, Miyazaki T (2010) IEEE Trans Magn 46:1863 CrossRefGoogle Scholar
  12. 12.
    Balke B, Fecher GH, Winterlik J, Felser C (2007) Appl Phys Lett 90:152504 CrossRefGoogle Scholar
  13. 13.
    Winterlik J, Balke B, Fecher GH, Felser C (2008) Phys Rev B 77:054406 CrossRefGoogle Scholar
  14. 14.
    Miura Y, Nagao K, Shirai M (2004) Phys Rev B 69:144413 CrossRefGoogle Scholar
  15. 15.
    Kandpal HC, Ksenofontov V, Wojcik M, Seshadri R, Felser C (2007) J Phys D, Appl Phys 40:1587 CrossRefGoogle Scholar
  16. 16.
    Picozzi S, Continenza A, Freeman AJ (2004) Phys Rev B 69:094423 CrossRefGoogle Scholar
  17. 17.
    Webster PJ (1969) Contemp Phys 10:559 CrossRefGoogle Scholar
  18. 18.
    Bacon GE, Plant JS (1971) J Phys F, Met Phys 1:524 CrossRefGoogle Scholar
  19. 19.
    Webster PJ, Ziebeck KRA (1988) Landolt-Börnstein new series group III, vol 19c, p 75 Google Scholar
  20. 20.
    Ziebeck KRA, Neumann KU (2001) Landolt-Börnstein new series group III, vol 32c, p 64 Google Scholar
  21. 21.
    Graf T, Casper F, Winterlik J, Balke B, Fecher GH, Felser C, Anorg Z (2009) Z Anorg Allg Chem 635:976 CrossRefGoogle Scholar
  22. 22.
    Inomata K, Okamura S, Goto R, Yezuka N (2003) Jpn J Appl Phys 42:L419 CrossRefGoogle Scholar
  23. 23.
    Miura Y, Shirai M, Nagao K (2004) J Appl Phys 95:7225 CrossRefGoogle Scholar
  24. 24.
    Wurmehl S, Fecher GH, Kroth K, Kronast F, Dürr HA, Takeda Y, Saitoh Y, Kobayashi K, Lin HJ, Schönhense G, Felser C (2006) J Phys D, Appl Phys 39:803 CrossRefGoogle Scholar
  25. 25.
    Umetsu RY, Kobayashi K, Kainuma A, Fujita R, Fukamichi K, Ishida K, Sakuma A (2004) Appl Phys Lett 85:2011 CrossRefGoogle Scholar
  26. 26.
    Ravel B, Cross JO, Raphael MP, Harris VG, Ramesh R, Saraf V (2002) Appl Phys Lett 81:2812 CrossRefGoogle Scholar
  27. 27.
    Balke B, Fecher GH, Felser C (2007) Appl Phys Lett 90:242503 CrossRefGoogle Scholar
  28. 28.
    Tezuka N, Ikeda N, Miyazaki A, Sugimoto S, Kikuchi M, Inomata K (2006) Appl Phys Lett 89:112514 CrossRefGoogle Scholar
  29. 29.
    Schaf J, Campbell IA, Le Dang K, Veillet P (1983) J Magn Magn Mater 36:310 CrossRefGoogle Scholar
  30. 30.
    van Roy W, Wojcik M, Jedryka E, Nadolski S, Jalabert D, Brijs B, Borghs G, De Boeck J (2003) Appl Phys Lett 83:4214 CrossRefGoogle Scholar
  31. 31.
    Wieldraaijer H, de Jonge WJM, Kohlhepp JT (2005) Phys Rev B 72:155409 CrossRefGoogle Scholar
  32. 32.
    Wurmehl S, Kohlhepp JT, Swagten HJM, Koopmans B, Wojcik M, Balke B, Blum CGF, Ksenofontov V, Fecher GH, Felser C (2007) Appl Phys Lett 91:052506 CrossRefGoogle Scholar
  33. 33.
    Wurmehl S, Kohlhepp JT, Swagten HJM, Koopmans B, Wojcik M, Balke B, Blum CGF, Ksenofontov V, Fecher GH, Felser C (2008) J Appl Phys 103:07D706 CrossRefGoogle Scholar
  34. 34.
    Inomata K, Wojcik M, Jedryka E, Ikeda N, Tezuka N (2008) Phys Rev B 77:214425 CrossRefGoogle Scholar
  35. 35.
    Jung V, Balke B, Fecher GH, Felser C (2008) Appl Phys Lett 93:042507 CrossRefGoogle Scholar
  36. 36.
    Jung V, Fecher GH, Balke B, Ksenofontov V, Felser C (2009) J Phys D, Appl Phys 42:084007 CrossRefGoogle Scholar
  37. 37.
    Ksenofontov V, Herbort C, Jourdan M, Felser C (2008) Appl Phys Lett 92:262501 CrossRefGoogle Scholar
  38. 38.
    Ravel B, Raphael MP, Harris VG, Huang Q (2002) Phys Rev B 65:184431 CrossRefGoogle Scholar
  39. 39.
    Balke B, Wurmehl S, Fecher GH, Felser C, Alves MCM, Bernardi F, Morais J (2007) Appl Phys Lett 90:172501 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut für Anorganische Chemie und Analytische ChemieJohannes Gutenberg – UniversitätMainzGermany
  2. 2.Max-Planck-Institut für Chemische Physik fester StoffeDresdenGermany

Personalised recommendations